
SoK: SGX.Fail: How Stuff Gets eXposed

Stephan van Schaik
University of Michigan

stephvs@umich.edu

Alex Seto
Purdue University
aseto@purdue.edu

Thomas Yurek
UIUC

yurek2@illinois.edu

Adam Batori
University of Michigan
aabatori@umich.edu

Bader AlBassam
Purdue University

balbassa@purdue.edu

Christina Garman
Purdue University
clg@cs.purdue.edu

Daniel Genkin
Georgia Tech

genkin@gatech.edu

Andrew Miller
UIUC

soc1024@illinois.edu

Eyal Ronen
Tel Aviv University

eyal.ronen@cs.tau.ac.il

Yuval Yarom
University of Adelaide
yval@cs.adelaide.edu.au

Abstract—Intel’s Software Guard Extensions (SGX) promises
an isolated execution environment, protected from all software
running on the machine. As such, numerous works have
sought to leverage SGX to provide confidentiality and integrity
guarantees for code running in adversarial environments. In
the past few years however, SGX has come under heavy
fire, threatened by numerous hardware attacks. With Intel
repeatedly patching SGX to regain security while consistently
launching new (micro)architectures, it is increasingly difficult
to track the applicability of various attacks techniques across
the SGX design landscape.

Thus, in this paper we set out to survey and categorize
various SGX attacks, their applicability to different SGX
architectures, as well as the information leaked by them. We
then set out to explore the effectiveness of SGX’s update
mechanisms in preventing attacks on real-world deployments.
Here, we study two commercial SGX applications. First, we
investigate the SECRET network, an SGX-backed blockchain
aiming to provide privacy preserving smart contracts. Next,
we also consider PowerDVD, a UHD Blu-Ray Digital Rights
Management (DRM) software licensed to play discs on PCs.
We show that in both cases vendors are unable to meet security
goals originally envisioned for their products, presumably due
to SGX’s long update timelines and the complexities of a
manual update process. This in turn forces vendors into mak-
ing difficult security/usability trade offs, resulting in security
compromises.

1. Introduction
Trusted Execution Environments (TEEs) have long been

the holy grail for security applications. Instead of enforcing
isolation and access control by software mechanisms, TEEs
aim to provide security via hardware, with the system’s
(micro)architecture enforcing protection. Indeed, with the
promise of strong security with near-native performance,
most hardware vendors offer TEEs, including ARM Trust-
Zone [16, 96, 100], AMD SEV [72]) and Intel SGX [40].

Recently however, computer systems have encountered
a new kind of threat. Starting from the origins of crypto-
graphic key extraction [98, 99, 138], side-channel attacks

have now become a threat to nearly all hardware-backed
security primitives. In addition to breaking basic security
primitives like user-kernel isolation [75, 85, 120, 123, 127],
hardware attacks have been demonstrated against nearly ev-
ery TEE deployment, including TrustZone [101, 105, 139],
SEV [29, 82, 83, 84, 93, 134, 135] and SGX [24, 42, 49,
70, 90, 118, 120, 123, 125, 127, 131, 133].

Unlike SEV and TrustZone, SGX is unique in the TEE
landscape in offering a way to mitigate the consequences of
a compromise. Bolstered by remote attestation and provi-
sioning mechanisms, microcode update options, and trusted
computing base (TCB) recovery procedures, Intel can, in
principle, recover SGX from compromise and update it after
every successful hardware attack.

With Intel CPUs being the target of a wealth of side
channel research and attacks, in this paper we aim to study
and categorize SGX attack techniques and their data leak-
ages, as well as ascertain the real world feasibility of SGX
post-compromise recovery. Thus, in this paper we set out to
study the following questions:

What techniques are available for attacking SGX en-
claves and what information do these techniques recover?
What mitigations exist, and how effective are SGX coun-
termeasures and TCB recovery mechanisms at preventing
compromises of SGX deployments?

1.1. Our Contribution
Given the wide variety of attacks on SGX enclaves,

we start by studying and building a comprehensive cate-
gorization of publicly known hardware attacks on them.
For each class of attacks, we detail what information can
be leaked and what countermeasures are available for it.
We then investigate the effectiveness of the SGX TCB
recovery mechanism, presenting an overview of SGX update
timelines. Finally, we examine two commercial SGX de-
ployments, the SECRET network (an SGX-based blockchain)
and PowerDVD (a UHD Blu-Ray software player).

By using SECRET and PowerDVD as case studies, we
are able to ascertain how well real-world SGX deployments
fare in the face of the SGX attack landscape. Unfortunately,
we find that due to fundamental issues in the design of SGX,

it is difficult to build and securely deploy SGX applications
that protect high-valued secrets. In particular, we argue that
as soon as SGX is compromised, market forces place ven-
dors with a difficult choice between significantly reducing
their user base and foregoing the SGX security guarantees,
allowing potential secret extraction.
Categorization of SGX Attacks. We begin by surveying
publicly known SGX attacks, categorizing the information
leakage via each attack technique (Section 3). We then pro-
ceed to describe countermeasures available, as well as if the
countermeasures are applied by Intel, the operating system,
or the enclave developer. Finally, we give an overview of the
prominent SGX-enabled Intel CPU families, summarizing
the attacks and mitigations applicable to each architecture.
Investigating SGX Update Cycles. With TCB updates
being a prominent feature in SGX post-compromise recov-
ery, we proceed to investigate the effectiveness of TCB
updates in protecting SGX applications from publicly known
mitigatable attacks. Here, we note that SGX’s threat model
assumes a malicious operating system, precluding the use
of “regular” update mechanisms. Consequentially, Intel col-
laborates with motherboard vendors who distribute SGX
microcode updates in BIOS updates. This is inefficient, as
BIOS updates might damage the motherboard, and thus must
be carefully vetted by each vendor for each separate product.

Measuring the update timelines, we perform a market
study of the timeline of BIOS update postings across six
motherboard vendors and six high-profile SGX vulnera-
bilities. As we show, SGX TCB updates can suffer from
extremely long delays, with vendors achieving 50% update
coverage of their product lines about 52 days after an
SGX vulnerability publication. Finally, even when a BIOS
update is available, its installation is often manual, and likely
only performed by advanced users. While we are unable to
remotely measure BIOS versions, we conjecture that many
machines are not updated, thereby remaining vulnerable to
well publicized attacks. Thus these machines cannot obtain
a trusted attestation status.
The Developer’s Dilemma. We observe that this long
update cycle requires enclave developers to strike a dif-
ficult balance between security and usability. On the one
hand, prioritizing security requires only using fully-updated
machines, which, due to the long update cycles, are often
not available in a timely manner for a large fraction of the
user base. This in turn can cause developers to potentially
lose a large part of their user base for often lengthy pe-
riods. On the other hand, prioritizing usability results in a
potential security risk, as adversaries may exploit known
vulnerabilities to breach the product’s security mechanisms.
Overall, we argue that the SGX update and recovery model
can put enclave developers in a difficult dilemma. Either
have secure products that require constant manual updates,
with the possibility that a large fraction of machines remains
permanently incompatible, or trust machines vulnerable to
severe SGX compromises, where enclave contents and at-
testation keys can often be recovered reliably in seconds.
Emulating SGX in Software. To demonstrate the impli-
cations of allowing the use of vulnerable machines, in Ap-

pendix A we develop EGX (Emulated Guard eXtensions), an
SGX emulator which runs enclaves (including production-
quality ones) outside of SGX, using leaked attestation keys.
Once the CPU’s attestation key has been extracted, EGX
allows executing enclaves on nearly any architecture and
hardware, including AMD, ARM and Apple CPUs.
Breaching the SECRET Network. For the first commercial
deployment we investigate as part of our study, we use
our EGX framework to breach the privacy guarantees of
the SECRET network [110]. SECRET is a privacy-preserving
blockchain which leverages SGX to provide confidential
execution of smart contracts. Since its launch in September
2020, SECRET has grown to a total market cap of $150
million, as of early October 2022.

As Intel did not address the xAPIC and MMIO is-
sues [10, 11, 12] via TCB recovery, we were able to register
a Rocket Lake server as a validator node. Despite not having
sufficient funds to be trusted to actively validate trans-
actions1, SECRET’s over promiscuous registration process
nonetheless stores a copy of SECRET’s global consensus
seed inside our SGX enclave. Next, we extend the work
of Borrello et al. [21] to Rocket Lake CPUs and extract
the consensus seed of our SECRET node, as well as the
its private EPID key. Using these keys we break SECRET’s
privacy-preserving features, decrypting the internal state of
all smart contracts on the network including all digital assets
embedded in them.
Breaching UHD Blu-ray DRM in PowerDVD. In our
second real-world case study, we use our EGX framework
to reverse engineer PowerDVD [2] and its DRM scheme
for playing UHD Blu-ray discs. Being the only software
licensed to playback UHD Blu-rays on PCs (as opposed
to dedicated hardware players), PowerDVD uses SGX to
ensure the integrity and confidentiality of the disc decryption
keys. Remarkably, PowerDVD trusts unpatched machines
with GROUP_OUT_OF_DATE attestation status, favoring
usability over security. Consequently, we can extract at-
testation keys from such vulnerable devices using known
techniques such as Foreshadow [120] and use them both in
framework and to aid in our reverse engineering process.

Throughout this process, we also uncover previously
undisclosed information about the Advanced Access Con-
tent System (AACS) 2 protocol, which is a closed-source
proprietary protocol for UHD Blu-ray DRM. We present the
first public specification of this protocol for the benefit of
future researchers in Appendix C. Finally, we are also able
to extract AACS2 decryption keys out of PowerDVD’s SGX
enclaves, allowing us to outline how one might completely
remove the encryption from a UHD Blu-ray movie.
Inefficient Platform Revocation. Throughout our ex-
ploration, we also noticed that the remote attestation pro-
tocol in SGX is poorly equipped to deal with wide-scale
key compromises, resulting in a potential denial of service
(DoS) attack on the SGX ecosystem. More specifically, the
complexity of the remote attestation protocol is linear in the

1. As of October 10, 2022, this requires having an account balance of
38,692 SCRT or $35,100 [111].

2

number of revoked platforms. As we show in Appendix B,
by compromising about 720,000 machines in a given group
ID and publishing their SGX keys, an attacker can mount
a DoS attack on SGX attestation, forcing attestation on
machines in the targeted group to take about an hour.

As prior works [120, 125, 127] show how to reliably
extract SGX keys, we argue that mounting such an attack
requires a budget of $36 million, which is within reach of
wealthy individuals or large organizations.
Mitigations and Future Research. Finally, based on both
our study of the different information leakages by known
attacks, as well as how well TCB recovery can protect real
world SGX deployments, we conclude with a discussion of
mitigations and future research directions in the space. We
provide concrete mitigations for the attacks presented here,
as well as generic lessons that can be learned by future
enclave developers from our two case studies. We also pro-
vide a number of general future design considerations and
research directions for TEEs and TCB recovery strategies.
Summary of Contributions. In this paper we make the
following contributions:
• We survey publicly known SGX attacks, categorize the

information they expose, and document their applicability
to prominent Intel architectures (Section 3).

• We document long delays and potential issues with the
SGX microcode update model, and quantify them with a
measurement study (Section 4).

• We present Emulated Guard eXtensions, an SGX virtu-
alization framework capable of running commercial SGX
enclaves on nearly any architecture (Appendix A).

• We breach the privacy guarantees of the SECRET network,
allowing us to recover the internal state of SECRET’s smart
contracts and any digital assets in them (Section 5).

• We reverse-engineer PowerDVD and breach AACS2
DRM scheme, while providing the first public documen-
tation of this mechanism (Section 6 and Appendix C).

• We analyze SGX’s revocation protocol, presenting a
denial of service attack against SGX attestation (Ap-
pendix B).

• We present concrete mitigations for the breaches dis-
cussed in this paper, as well as provide a broader dis-
cussion on recovery mechanisms and future research and
TEE design directions based on our study (Section 7).

1.2. Disclosure and Ethics
Our research and disclosure were conducted ethically

and responsibly in consultation with the Electronic Frontier
Foundation (EFF) and with the aim of minimizing risk to all
parties. We have disclosed our results to Intel, the SECRET
network, and CyberLink (PowerDVD’s vendor), and assisted
both SECRET and CyberLink with handling these issues.
Aiming to preserve the privacy of SECRET’s users, all testing
was only performed on our own transactions, with explicit
consent of transacting parties.

1.3. Current Status
We have coordinated the public disclosure of this work

with Intel, CyberLink and the SECRET network.

Intel. While an SGX TCB recovery addressing the xAPIC
and MMIO issues [10, 11, 12, 21] was originally planned
to happen no later than March 7, 2023 [67], 7 months after
the public posting of these issues, this date has now been
changed to November 29th, 2022. However, we note that this
only partially addresses the issue, as TCB recovery for some
popular SGX-enabled servers and desktops will only occur
in January 2023 leaving these vulnerable until then [66].
SECRET Network. We have assisted the SECRET net-
work in hardening their deployment against SGX attacks.
In particular, SECRET no longer accepts nodes vulnerable
to ÆPIC. However, as SECRET’s current protocol design
makes it quite difficult to change the network’s consensus
seed, it is currently impossible to guarantee privacy of past
or future transactions performed on the SECRET network.
Finally, while updating the consensus seed would provide
protections for future transactions, there are unfortunately
no guarantees that can ever be made about any transactions
made under a leaked seed.
PowerDVD. Being perhaps the largest SGX deploy-
ment when counting the number of users that must have
SGX-enabled machines, it is difficult for PowerDVD to
expect these users to continuously update their BIOS as a
condition to playing UHD Blu-Ray discs. As such, Pow-
erDVD is likely to continue to trust unpatched machines
with GROUP_OUT_OF_DATE attestation status, making it
vulnerable to nearly all SGX attacks.

2. Background and Related Work
2.1. Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) [15, 89] is an
extension of the x86 64 instruction set, supporting secure
code execution in untrusted environments. SGX creates
secure execution environments, called enclaves, which pre-
vents inspection and modification of the code and data inside
them. Additionally, SGX provides an ecosystem for remote
attestation to ensure that these enclaves are running on
genuine trustworthy Intel hardware, and not by a malicious
simulator.
SGX Threat Model. SGX’s threat model only trusts
the processor’s hardware and Intel-provided and Intel-signed
architectural enclaves. Other than the architectural enclaves,
SGX does not trust any software executing on the processor,
including the operating system, the hypervisor, and the
firmware (BIOS). The processor’s microcode, however, is
considered part of the processor and hence trusted.
Identifying Enclaves. For each enclave, SGX keeps
an identity comprised of the enclave developer’s identifier
and a measurement representing the enclave’s initial state.
The developer’s identifier, referred as mrsigner in SGX
literature, is a cryptographic hash of the public RSA key the
enclave developer used to sign the enclave’s measurement.
The measurement, representing the enclave’s initial state, is
a cryptographic hash of those parts of the enclave’s contents
(code and data) that its developer chose to measure. Follow-
ing the SGX nomenclature, we refer to this measurement as
mrenclave.

3

Proving EnclaveQuoting Enclave (QE)
QUOTE

Generate QUOTE Forward QUOTE to Remote Verifier

End User Device

QUOTE
Remote Verifier

Forward QUOTE to IAS

Read Verification Report

Intel Attestation Service (IAS)

Verify QUOTE, Send Verification Report

QUOTE

VREPORTApp DataSeal Data to Disk

Figure 1: Remote Attestation Example

2.2. SGX’s Attestation Mechanism
One of the most compelling properties that SGX pro-

vides is the ability of an enclave to attest to a remote
verifying party that it is running on genuine and trustworthy
Intel hardware, with confidentiality and security guarantees,
as opposed to a malicious simulator. This allows the remote
party to subsequently provision the enclave with secrets,
while being assured that these secrets never leave the en-
clave’s memory.

We now proceed with an overview of SGX’s attestation
process (see [71] for an extended discussion).
Local attestation. When an enclave wants to prove (or at-
test) to a remote verifier, it first needs to prove its identity to
the Quoting Enclave (QE)—a special architectural enclave
provided and signed by Intel—via a process referred to as
local attestation [15, 60]. At a high level, this is done by
having the proving enclave use the ereport instruction,
which prepares a report containing the mrenclave and
mrsigner values of the proving enclave. The report is
also signed using a key that is only accessible to the QE.
The proving enclave then passes the report to the Quoting
Enclave, which proceeds with the remote attestation process.
Remote Attestation. Once local attestation is complete,
the QE can generate and sign a “Quote” authenticating the
proving enclave. Using the information from the Report, the
Quote contains a code hash (mrenclave) of the proving
enclave as well as its developer’s identifier (mrsigner).
The quote also contains information as to whether the prov-
ing enclave is running in production or debug mode. Next,
each SGX-enabled CPU is provisioned with an attestation
private key, which is obtained from Intel’s attestation server
during SGX initialization. The attestation key is then sealed
with keys only available to the Quoting Enclave (QE).

For attestation, QE accesses the machine’s private at-
testation keys and signs the proving enclave’s quote. This
quote is sent to the verifying party (e.g., service provider),
which will in turn send it to Intel’s Attestation Server (IAS)
for verification. As Intel possesses the public keys corre-
sponding to each SGX machine, a successful IAS response
guarantees to the verifying party that the enclave is running
in SGX and has not been tampered with. See Figure 1 for
an outline of SGX attestation for an example program.
Trusted Compute Base. The trusted compute base (TCB)
is the set of components that must be working correctly, and
may not be malicious or compromised for SGX to operate
securely. Among these components are the CPU itself, the
microcode, the quoting and provisioning enclaves as well
as the trusted runtime system (tRTS) from the Intel SGX
SDK. Whenever a vulnerability is found that compromises

the TCB, Intel has to release a microcode update to mitigate
the issue and to restore trust in the TCB, a process known
as TCB recovery.
Attestation Status. When the attestation report re-
turns the TRUSTED status, then this indicates that any
known compromises have been mitigated, thus that the
platform is fully trusted. Other variants of the attesta-
tion status include that a configuration change is re-
quired (CONFIGURATION_NEEDED) or that the en-
clave developer has to provide software mitigations (SW_
HARDENING_NEEDED) or a combination of these (SW_
HARDENING_AND_CONFIGURATION_NEEDED). Finally,
GROUP_OUT_OF_DATE indicates that the platform is af-
fected by a known vulnerability, and that mitigations as well
as a TCB recovery is required to restore trust.
Enhanced Privacy ID (EPID). Rather than using standard
digital signatures, SGX attestation uses the Intel-designed
EPID protocol [26], which is a type of group signature that
allows a CPU to sign messages (using its private signing
keys) without uniquely disclosing its identity. When exe-
cuted in unlinkable mode, all that an external observer (e.g.,
Intel) can do is verify the signature without being able to
link it to any specific Intel CPU or other previously signed
quotes. This allows SGX providers to be convinced that their
secrets are indeed stored in a genuine Intel enclave, without
being able to identify the specific CPU in a given group.

3. Categorization of SGX Attacks, Conse-
quences, and Mitigations
We now look at published SGX attacks and their impact

from the point of view of an enclave developer as shown
in Table 1. That is, our goal is to characterize what these
attacks can leak and what impact they have from an SGX
programmer’s perspective, rather than focusing on the de-
tails of how to mount these attacks and how they work [106].
More specifically, these attacks can have an impact on con-
fidentially, i.e. the attacker can infer sensitive information,
and/or integrity, the attacker can tamper with the enclave’s
data. For each of the attacks we discuss this impact, the
current mitigation strategies and possible improvements to
mitigate such attacks in the future.

We first focus on vulnerabilities that rely on the attacker
inferring sensitive data from the enclave’s access patterns
in Section 3.1 and locating and exploiting both memory
corruption vulnerabilities and speculative execution gadgets
within an enclave in Section 3.2 and Section 3.3. As these
attacks rely on the enclave code, these generally require the
enclave developer to mitigate them. It is also important to
note that as the provisioning and quoting enclave as well as

4

Attack Developer Intel Leakage Mitigation
Branch predictors [45, 55, 80] X 7 Branches (code) Constant-time code
Caches [24, 34, 42, 51, 90, 107] X 7 64B accesses (code + data) Constant-time code
Memory dependencies [91] X 7 4B accesses (code + data) Constant-time code
Port contention [13] X 7 µ-ops (code) Constant-time code
Page faults [136] X 7 4K accesses (code + data) Constant-time code
A/D bit monitoring [119] X 7 4K accesses (code + data) Constant-time code
DRAM channel [131] X 7 1K - 8K accesses (code + data) Constant-time code
FLUSH+RELOAD on PTEs [119] X 7 4K accesses (code + data) Constant-time code
IA32 segmentation faults [50] 7 X 1B accesses (code + data)* Mitigated
Interrupts [80, 90, 118, 121] X 7 Instructions Constant-time code
CopyCat [92] X 7 Instructions Constant-time code
MicroScope [114] 7 7 Instructions Constant-time code
ROP gadgets [20, 79] X 7 Gadget dependent† Memory safety
SmashEx [41] X 7 Gadget dependent† Memory safety
Synchronization [128, 132] X 7 Gadget dependent† Thread safety
SgxPectre [32] X 7 Gadget dependent† lfence & retpoline
Load Value Injection [102, 122] X 7 Gadget dependent† lfence
Foreshadow [120] 7 X Enclave memory, CPU registers No Hyper-Threading
SA-00219 [63] 7 X Enclave memory‡, CPU registers No iGPU
MDS [31, 108, 123] 7 X In-flight loads/stores, vector registers No Hyper-Threading
CacheOut [127] 7 X Enclave memory, CPU registers
Crosstalk [103] 7 X MSRs, egetkey, rdrand
MMIO Stale Data [68] 7 X MSRs, egetkey, rdrand No Hyper-Threading
ÆPIC Leak [12, 21] 7 X Enclave memory§, CPU registers No Hyper-Threading
PlunderVolt/V0LTpwn [74, 94] 7 X AES-NI keys No voltage scaling MSRs
PLATYPUS [86] 7 X AES-NI keys, control flow, etc. No RAPL

TABLE 1: An overview of the SGX attacks and whether the developer and/or Intel is required to address the issue. Leakage indicates
what can be leaked. Mitigation indicates what is required to reach trusted status where a microcode update is available. *: 1B accesses for
enclaves ≤ 1 MiB, otherwise 4K accesses. †: (speculative) code execution inside the enclave which can lead to leaking enclave memory,
CPU registers, keys, etc. ‡: 8B of every cache line. §: 75% of even cache lines.

the tRTS are part of the TCB, that Intel is also an enclave
developer and that these may require software patches too.

Then we shift our focus towards vulnerabilities that
externally affect the enclave, such as attacks that can leak
enclave memory and thus extract sensitive information such
as keys in Section 3.4, as well as fault attacks in Section 3.5.
As these are outside of the enclave developer’s control,
these generally require Intel to provide mitigations through
a microcode update and by performing a TCB recovery.
However, ultimately, it is up to the enclave developer to
decide what platforms and hardware configurations to trust,
as it is sometimes possible to mitigate certain issues in
software.

3.1. Inferring Access Patterns
Since CPU threads and cores competitively share mi-

croarchitectural resources such as branch predictors [45, 55,
80], caches [24, 34, 42, 51, 90, 107], dependency resolu-
tion [91], DRAM row buffers [131] and port contention [13],
an attacker can rely on contention to infer the control flow
and/or data access patterns of an SGX enclave at different
granularities. These attacks can be used to recover ECDSA
nonces [47, 137], attack RSA exponentation [80] as well as
recover keys from S-box/T-table implementations of AES.

Xu et al. [136] showed that unmapping enclave pages
can be used to track page accesses, as the enclave accessing
that page causes a page fault. Van Bulck et al. [119] and

Wang et al. [131] showed that the use of access and dirty
bits can be used to monitor page activity as well. In addition,
Wang et al. [131] demonstrated that a concurrently running
SGX enclave can infer whether the victim is accessing the
same DRAM bank and row through DRAM contention.
Furthermore, Van Bulck et al. [119] explored mounting a
FLUSH+RELOAD attack on the page tables to infer enclave
page accesses. Gyselinck et al. [50] demonstrated another
controlled-channel attack in 32-bit enclaves at a byte-level
granularity in the first MiB of the enclave address space
by using segmentation faults. However, a recent microcode
update addresses this.

Another line of work [80, 90, 118, 121] focused on
interrupting the enclave execution to sample side-channel
measurements yielding a framework that allows an attacker
to single-step the enclave execution. Nemesis [121] showed
that different instructions have a different response time to
service the interrupt. CopyCat [92] extended this work by
counting the number of instructions executed to infer the
control flow at a very fine-grained granularity, which can
then be used to perform ECDSA key recovery from a single
trace. Finally, MicroScope [114] showed that the attacker
can speculatively replay a single page faulting instruction in
the enclave, which leads to the amplification of other side-
channel attacks, but more specifically to detect the input of
certain instructions as well as infer branches.

Mitigation: The enclave developer needs to ensure that the

5

attacker cannot infer sensitive information from control flow
or access patterns by avoiding secret-dependent branches
and memory lookups [14, 17]. Bernstein and Yang [19]
proposed a constant-time GCD algorithm that can be used
for applications like modular inversion. Similarly, there are
AES implementations using bit-slicing [87], vector instruc-
tions [53] and AES instructions on modern Intel CPUs [54].

However, such constant-time implementations are usu-
ally limited to specific cryptographic implementations,
whereas generic algorithms require a different approach.
Raccoon [104] is one such option that implements the
oblivious RAM (ORAM) technique by always evaluating
both paths of a conditional branch. Ohrimenko et al. [97]
instead propose to eliminate all conditional branches by
transforming them into a conditional move (cmov) instruc-
tion. However, their approach is limited to data-oblivious
machine learning algorithms. Zigzagger [80] is a compiler-
based mitigation against branch shadow attacks that obfus-
cates a set of conditional branches by merging them into
a single indirect branch, which is harder to infer. As none
of these tools adequately address the problem of inferring
sensitive information from access patterns, as they either
focus on constant-time cryptographic primitives or are oth-
erwise limited by applicability or performance, this area is
still open to future research.

Not only do some of the control channel attacks, the
interrupt-driven attacks as well as MicroScope help with
tracing the enclave execution, they also help with reaching a
point where sensitive data is present in memory, whereupon
it can then be leaked using another attack. Unfortunately,
such use of these attacks cannot be addressed by the en-
clave developer, and Intel does not address these through
microcode updates either. Thus, it would be interesting to
see future improvements to SGX to address these issues.
To prevent control channel attacks on the enclave’s page
tables, it would be interesting to shift the responsibility of
managing these from the OS to microcode. Furthermore,
another area of research is to explore the possibility of
shifting the responsibility of handling interrupts triggered
during enclave execution from the OS to the enclave, such
that the OS can no longer arbitrarily interrupt the enclave. In
addition, for timer-driven interrupts, it would be interesting
to explore adding jitter to the interrupt delivery to defend
against single-stepping as well as inferring what kind of
instruction is being executed.

3.2. Memory Corruption Attacks
Memory corruption vulnerabilities such as buffer over-

flows, use-after-free, and return-oriented programming may
also affect enclave code, which the attacker can exploit
to achieve code execution inside the enclave resulting in
the ability to read and/or modify enclave memory, extract
keys, etc. While SGX aims to provide confidentiality and
integrity guarantees, memory corruption bugs and other bugs
introduced by the enclave developer fall outside of the SGX
threat model, thus the enclave developer is fully responsible
for addressing these. Even more so, the fact that SGX
is often used for sensitive data, makes it a much more

interesting target for an attacker to find such bugs and exploit
them.

In fact, Lee et al. [79] first demonstrated the viability of
return-oriented programming attacks against SGX enclaves.
Biondo et al. [20] further improved this work by showing
the practically of exploiting such gadgets from userspace
without enclave crashes. Furthermore, SmashEx [41] shows
how enclave SDKs that do not carefully handle re-entrancy
in the exception handler can be exploited.

Weichbrodt et al. [132] and Vicarte et al. [128] exploit
the page faulting mechanism to interrupt enclave execu-
tion, to consequently control the scheduling order in multi-
threaded enclave applications, leading to the exploitation of
TOCTOU and use-after-free vulnerabilities.
Mitigation: One way of mitigating memory corruption
bugs is to consider writing enclaves in a memory safe
programming language. For instance, both Apache Tea-
clave [129, 130] and Fortanix eDP [46] are SGX frameworks
that allow the development of enclaves in Rust. Furthermore,
Enarx [44] allows enclave developers to target a more
restricted WASM environment running inside Intel SGX.

While the operating system does provide a system-wide
implementation of Address Space Layout Randomization
(ALSR), an attacker can decide to disable ASLR for SGX
applications. Thus SGX-Shield [112] implements an ASLR
scheme in LLVM that can be deployed in SGX enclaves to
harden memory corruption bugs from exploitation without
the attacker having control over it. SGXBOUNDS [77]
instead relies on pointer tagging to implement bounds check-
ing by encoding the upper bound in the upper part of the
64-bit pointers. In addition, SGXFuzz [36] is a coverage-
guided fuzzer that can be used to find memory corruption
bugs in SGX enclaves.

3.3. Speculative Execution Gadgets
SgxPectre [32] shows that various speculative execution

gadgets can be found in SGX enclaves where the attacker
can first train the branch predictor or perform branch target
poisoning to have the processor mispredict branches and
as a result have it speculatively execute arbitrarily chosen
code in the enclave. Such speculative gadgets can then leave
microarchitectural traces, e.g. in the cache, that allows an
attacker to extract sensitive data, such as keys, from SGX
enclaves. Furthermore, Load Value Injection (LVI) [122] and
Floating-Point Value Injection [102] shows that the attacker
can manipulate the value returned by load instructions in
speculative execution gadgets by injecting data into the
microarchitectural buffers. We provide a more elaborate
overview of attacks that can lead to LVI in Section 3.4. More
specifically, this affects speculative gadgets that consist of
two memory dereferences, where the attacker uses LVI to
poison the first with the target address of interest and where
the second leaves a different microarchitectural trace that
is dependent on the secret value loaded by the first. Such
gadgets allow attackers to read arbitrary enclave memory,
which can then lead to the extraction of keys.
Mitigation: These issues all rely on the fact that the
attacker can poison resources shared with the enclave, such

6

as branch prediction and micro-architectural buffers, before
executing the enclave. Intel provides Single Thread Indirect
Branch Predictors (STIBP) to prevent the sibling thread
from influencing the branch prediction, and Indirect Branch
Restricted Speculation (IRBS) to prevent the attacker from
poisoning branch prediction before executing the enclave.
Finally, Indirect Branch Predictor Barrier (IBPB) provides
a barrier to prevent branch poisoning across the barrier. To
fully prevent exploitation of speculative execution gadgets,
enclave developers should use a compiler that inserts the
lfence instruction after direct branches as well as deploy
the retpoline mitigation for indirect branches, and may use
code analysis tools such as fuzzers to locate such gadgets.
Intel ships gcc with these mitigations as part of their In-
tel SGX SDK [56], and additionally these mitigations are
available as part of LLVM and thus Clang as well as other
LLVM-based compilers.

While Intel also recommends this for LVI, a simi-
lar methodology to the one for branch poisoning can be
followed by disabling Intel Hyper-Threading and flushing
affected buffers before entering the enclave. Incidentally,
the microcode updates to address issues such as MDS, may
thus also indirectly (partially) address LVI as they impose
requirements to disable Hyper-Threading and may flush af-
fected buffers before entering the enclave. However, without
an official statement from Intel, an enclave developer cannot
rely on such assumptions.

3.4. Leaking Enclave Data
We now focus on attacks that leak enclave data, and thus

have an impact on confidentiality and integrity as they can
be used to read enclave memory, CPU register values and
ultimately extract sensitive data such as sealing keys, used
by enclave to encrypt data to disk, and Intel’s attestation
keys, used to sign attestation reports. Thus, access to these
keys allows an attacker to decrypt sensitive data sealed by
the enclave and forge attestation reports from non-trusted
hardware, respectively. The latter is especially problematic
as it allows an attacker to run any enclave code they wish,
outside of SGX, thus violating all integrity guarantees. In
general, these attacks can either (partially) read enclave
memory, or sample in-flight data from specific instructions
during their execution. Furthermore, these attacks tend to
rely on a page swapping mechanism that SGX provides to
the untrusted OS, that allows an attacker to target specific
enclave data without having to execute the enclave, which
means that there is nothing the enclave developer can do to
mitigate these attacks.
Foreshadow. Foreshadow [120] allows an attacker to
leak the data for any physical address as long as the corre-
sponding data is cached, essentially allowing an attacker to
read enclave memory, including sensitive data that is part
of the enclave, as well as gain access to Intel’s attestation
keys, which can be used to forge attestation quotes from a
non-trusted machine. Furthermore, the attacker can read the
CPU registers, as they are stored in memory whenever the
enclave is interrupted. Similarly, SA-00219 [63] allows the
integrated GPU to access the first 8 bytes of every cache line

on affected processors, essentially providing access to the
first 64 bits of the key returned by the egetkey instruction.
MDS. Microarchitectural Data Sampling (MDS) attacks
such as RIDL, ZombieLoad and Fallout [31, 108, 123, 124,
126] target various micro-architectural buffers present in
the CPU. Therefore these attacks can bypass most of the
common security boundaries, including those between the
application and SGX enclaves by leaking in-flight data from
the SGX enclave through those buffers. In combination with
the control flow attacks as outlined before, MDS attacks can
be used to target in-flight data from specific instructions.
CacheOut. While MDS allows an attacker to target in-
flight memory instructions [31, 108, 123] and vector regis-
ters [126], CacheOut [127] shows how to selectively evict
data from the cache into these micro-architectural buffers to
gain a primitive similar to Foreshadow.
CrossTalk. Furthermore, CrossTalk [103] shows that there
are micro-architectural that can be sampled across cores the
MDS attacks, and that enclaves can thus be attacked across
cores. In particular, CrossTalk demonstrates how to extract
an ECDSA private key from an enclave by sampling values
from the rdrand instruction, but can also leak sealing keys
from egetkey and indirectly Intel’s attestation keys.
MMIO Stale Data. Finally, SA-00615 [68] presents an-
other class of MDS attacks where misaligned or incorrectly
sized accesses to device memory or memory-mapped I/O
(MMIO) may cause stale data to be propagated from the un-
core buffers to the fill buffers, or even become architecturally
visible. Since this issue affects the egetkey and rdrand
instructions, it provides similar capabilities as CrossTalk.
Similarly, ÆPIC leak [21] shows how an attacker can read
enclave memory using unaligned reads on the legacy APIC
mapping to sample data from the superqueue, providing
similar capabilities as Foreshadow.
Data at rest. To overcome the constraint of getting the
enclave’s data in the appropriate cache or micro-architectural
buffer to leak it from, several works [21, 120, 127] rely on
ability of the untrusted OS to use the ewb instruction to
swap out enclave-owned pages and the eldu instruction
to load them back in. An attacker can use this swapping
mechanism with a variety of attacks to leak arbitrary enclave
data, and as this mechanism is outside of the control of
the enclave developer, there is nothing that can be done by
the enclave developer to protect the enclave against these
attacks, thus requiring Intel to provide mitigations.
Mitigation. Before we discuss mitigations, we provide
an overview of the various attacks and the platforms they
affect in Table 2 to give an idea of which attacks affect what
platforms, and thus which platforms require what mitiga-
tions specifically. As we will see, most vulnerabilities share
similar mitigation strategies, thus, even when a platform
was previously unaffected, it eventually ends up with similar
mitigations as new similar vulnerabilities get discovered and
disclosed.

The first issue is that the attacker can run code simulta-
neously to the enclave executing on another CPU thread,
CPU core or even the integrated GPU, requiring Hyper-
Threading to be disabled for Foreshadow and MDS and

7

Attack SKL KBL CFL CFL-R WHL CML ICL RKL
Year 2015 2016 2017 2018 2019 2020 2021 2021
Foreshadow [120] 2018 X X X 7 7 7 7 7
SA-00219 [63] 2019 X X X X X 7 7 7
MDS [31, 108, 123] 2019 X X X X* X* 7 7 7
CacheOut [127] 2020 X X X X X 7 7 7
Crosstalk [103] 2020 X X X X X X 7 7
MMIO Stale Data [68] 2022 X X X X X X X X
ÆPIC Leak [21] 2022 7 7 7 7 7 7 X X
PlunderVolt / V0LTpwn [74, 94] 2019 X X X X X X X 7
Platypus [86] 2020 X X X X X X X 7

TABLE 2: An overview of the SGX attacks and the affected platforms. SKL: Skylake (e.g. Intel Core i7-6700K), KBL: Kaby Lake (e.g.
Intel Core i7-7700K), CFL: Coffee Lake (e.g. Intel Core i7-8700K), CFL-R: Coffee Lake Refresh (e.g. Intel Core i9-9900K), WHL:
Whiskey Lake (and Amber Lake) (e.g. Intel Core i7-8665U), CML: Comet Lake (e.g. Intel Core i9-10900K), ICL: Ice Lake (e.g. Intel
Core i7-1165G7, RKL: Rocket Lake (e.g. Intel Xeon E-2334), *: affected by Vector Register Sampling (VRS) and TSX Asynchronous
Abort (TAA).

the integrated GPU for SA-00219. Second, whenever the
enclave exits, sensitive data may be lingering around in the
caches or micro-architectural buffer, whereupon the attacker
can leak this data, thus requiring flushing the caches (e.g.
Foreshadow) and micro-architectural buffers (e.g. MDS)
upon enclave exit. Finally, some attacks, such as Crosstalk,
affect micro-architectural buffers shared between multiple
CPU cores, which requires serialized access to these buffers
as well as flushing to ensure no data lingers around. Thus for
each of these attacks Intel has to provide, and has provided,
a microcode update implementing these mitigations.

As the SGX swapping mechanism is of interest to at-
tackers, a future improvement would be to provide enclave
developers to mark enclave pages as non-swappable, such
that sensitive pages cannot be swapped out by an attacker.
While this does not address the root cause of these attacks,
it does severly limit the applicability of the attack. Another
improvement would be to add an instruction to check that
the arguments to enclave function calls strictly points to
valid DRAM memory, which could help address the issue
of an attacker providing pointers to memory-mapped I/O, as
the enclave has no access to the physical addresses.

3.5. Fault Attacks
PlunderVolt [94] and V0LTpwn [74] abuse interfaces for

dynamic voltage scaling on x86 CPUs to perform fault injec-
tion on SGX enclaves. More specifically, Plundervolt shows
how to perform fault injection on the AES-NI instructions
as well as on the ereport and egetkey instructions.
The keys used for AES-NI can then be extracted through
differential fault analysis. PLATYPUS [86] uses Intel RAPL
to monitor the power consumption of instructions running
inside an SGX enclave to infer sensitive data. This infor-
mation can then be used to extract keys from the AES-NI
instructions as well as be used to determine the control flow
of branches among other attack scenarios.
Mitigation: Since access to Intel RAPL and the MSRs to
control the CPU voltage is outside of the enclave developer’s
control, Intel released microcode updates that disables ac-
cess to these interfaces. Access to these interfaces is required
to be disabled in order to reach fully trusted status.

More broadly speaking, interfaces that can be used to
monitor resource consumption (e.g. power, frequency, tem-
perature, performance counters, etc.), and thus infer sensitive
information from the enclave’s execution, should not be
accessible or should not be updated to reflect the enclave’s
execution. Similarly, interfaces that affect the enclave’s ex-
ecution, such as adjusting the voltage, should also not be
accessible or SGX should maintain its own parameters while
executing the enclave.

3.6. Summary & Discussion
To summarize, we have provided an overview of the

various SGX attacks, whether the developer or Intel is
responsible for their mitigation, what an attacker can achieve
with these attacks, and what impact that translates to for an
enclave developer.
Mitigations for Developers. First, we discussed attacks
such as inferring access patterns, speculative execution at-
tacks and memory corruption attacks, While these can be
mitigated through compiler extensions and code analysis
tools, there are also options such as the use of constant-time
cryptographic primitives and SGX frameworks in Rust.
Mitigating poisoning & leakage. Next, attacks that
exploit speculative execution and other CPU issues are not
exclusively the developer’s responsibility, and also require
microcode updates that prevent the sibling thread from
poisoning state shared. Furthermore, to mitigate attacks that
read enclave memory, the microcode should flush any such
shared state on enclave entry, on enclave exit and when
swapping enclave pages. The microcode should also pre-
vent poisoning or leaking state from concurrently running
applications on the same hardware. Finally, it is up to the
enclave developer whether their enclave is allowed to run
with features such as Intel Hyper-Threading enabled or not.
Restricting Control. We also discussed mitigations
that essentially restrict the control an attacker has, and in
some cases even provide enclave developers with additional
control over the enclave’s execution environment. More
specifically, we discussed solutions that move ASLR into
the enclave, remove the OS responsibilities to manage page
tables and interrupt handling for the enclave, limit the SGX

8

swapping mechanism, and limit access to interfaces that
monitor or affect enclave execution.

4. Surveying SGX Update Timelines
Having provided an overview of the various SGX attacks

and having discussed the various mitigations to deploy for
these attacks, we now look at how long it takes for Intel’s
mitigations to reach the end-users of SGX. When a new
SGX vulnerability is discovered, Intel typically issues a
microcode update for most affected architectures. These up-
dates are not persistent, rather they are re-applied every time
the computer boots. Being unable to trust the (potentially
malicious) operating system to keep SGX updated, Intel
collaborates with motherboard vendors to distribute SGX
updates through BIOS updates.

The Difficulty of SGX Updates. We argue that this BIOS-
driven SGX update process presents two security issues. The
first is that BIOS updates are manual, potentially dangerous,
and generally only recommended if absolutely necessary.
Next, compared to regular software updates, BIOS updates
are often released very slowly, and in some cases not at all.

In this section, we aim to shed light on SGX update
timelines, by quantifying the time duration between SGX
vulnerability disclosure and microcode availability.

BIOS Scraping. We conducted a web scraping campaign
in which we downloaded and analyzed every BIOS update
we could find for six major manufacturers: ASRock, Dell,
HP, Lenovo, MSI, and Gigabyte. As we found BIOS update
documentation to be inconsistent and generally unhelpful,
we opted instead to programmatically analyze each update
to search for relevant microcode patches using both MC Ex-
tractor [88] and our own microcode header parsing tool. In
all, we identified roughly 173,000 microcode updates, where
about 5300 fixed a specific known attestation-breaking SGX
vulnerability on a unique device for the first time.

Unfortunately for our analysis, BIOS update histories
are not always well-kept: old updates are sometimes re-
moved with no record of what they contained and we
have to assume that the claimed upload times of different
updates are accurate. Furthermore, BIOS packing methods
vary greatly between manufacturers and even product lines,
making it difficult to determine if all microcode updates
have been extracted. Because of these limitations, we only
count updates which include the specific microcode patch
which fixes a vulnerability we consider, and do not make any
claims about how many vulnerabilities are never patched.

SGX Update Lifecycle. We analyzed six common SGX
vulnerability patches [4, 5, 6, 7, 8, 9] and cataloged the
BIOS updates which applied them. Figure 2 presents a
summary of our findings, plotting the percentage of products
with available SGX patches against the elapsed days since
public vulnerability disclosure, optimistically assuming that
every patchable product is patched by the end of the survey.

Among the surveyed vendors, the median patch time
ranged from 25 days (HP) to 125 days (Lenovo). Overall,
the median vendor had a median patch time of 52 days or

Figure 2: Time Taken To BIOS-Patch Major SGX Vulnerabilities
After They Are Made Public

almost two months. Issue times varied by vulnerability2 but
we emphasize the large variance in responses: some product
lines shipped patches before the vulnerability’s disclosure,
while others took many months (if they shipped at all).
Hardware Update Lifecycle. For comparison purposes, we
also discuss how SGX patching compares to other patching
and update mechanisms, such as general microcode-to-BIOS
propagation. Here, we survey the same six vendors but look
at the time of propagation of all microcode updates to BIOS
updates (security-critical or not) for both Intel and AMD.
Figure 3 presents a summary of our findings, plotting the
percentage of products with BIOS updates containing the
most recent microcode against the elapsed days since that
microcode patch was first seen in any BIOS update.

Among the vendors we survey, we notice a similar trend
as before, with HP and MSI having the fastest median
update time when releasing Intel microcode updates at 37
days, while Lenovo has the slowest at 329 days. For AMD
microcode update propagation, MSI has the fastest time at
just over 70 days, while Dell and Lenovo had the slowest
at 477 days and 1043 days respectively3. Interestingly, we
notice a distinct difference between the Intel and AMD
microcode propagation times with median times of 61 days
and 98 days respectively. We leave analysis of why this
might be the case as an open problem for future work.
Comparison. We conclude that BIOS updates are gen-
erally slow, regardless of the motherboard manufacturer or
processor vendor, even though security-critical microcode
propagates quicker than general purpose microcode updates.

2. L1D Cache Eviction Sampling [8] is a notable outlier in our dataset,
since in that instance Intel publicly released a fix three months after they
first acknowledged the issue (though some Lenovo products received a
patch months earlier than other vendors)

3. We note that, based on our survey, Lenovo shows exceptionally long
update times for AMD microcodes. We do not know for sure why this is,
but hypothesize that this is likely a function of our methodology, which
assumes that the first available BIOS update to contain a specific microcode
patch must be a microcode update.

9

0 200 400 600 800 1000
0

50

100
Intel

0 200 400 600 800 1000
0

50

100
AMD

Elapsed Days%
 o

f P
at

ch
es

 A
va

ila
bl

e

Dell
Lenovo
ASRock
HP
MSI
Gigabyte

Figure 3: Time Between Microcode Releases and Their Integration
into a BIOS Update

We contrast this with the update life-cycle and timeline
for security-critical bugs in software. Li et al. provide a
detailed study on exactly this topic, noting for example
that for 78.8% of all CVEs, security fixes were released by
public disclosure time, manifesting essentially a zero time
difference [81]. This demonstrates the stark difference in
patch propagation time in software versus hardware.
A Difficult Tradeoff. Even when Intel’s microcode patches
are available and even under the optimistic assumption
that all devices eventually get patched, we are left with a
troubling usability issue. With multiple SGX breaks in a
year, combined with multiple months of patch delay per
break, service providers are required to strike a fine balance
between usability and security with respect to trusting SGX.

Ideally, vendors would require that products only run
on fully updated machines, in TRUSTED status, which can
presumably securely contain the vendor’s secrets. However,
the difficulty of installing BIOS updates means that achiev-
ing TRUSTED status is cumbersome for regular users, which
limits the product’s market share, and hurts user experience.
Alternatively, vendors can prefer compatibility over security,
storing sensitive information inside SGX enclaves running
on unupdated machines with GROUP_OUT_OF_DATE at-
testation status. As we show in Section 6, this choice can
have serious security consequences, up to and including the
removal of all secrecy and integrity properties.
TCB Recovery. To further exemplify this trade off, we
look at xAPIC and MMIO issues [10, 11, 12, 21] that were
officially dislcosed on August 9, 2022. We found that, as
of writing, platforms affected by these xAPIC and MMIO
issues are still in TRUSTED status two months after this
disclosure date, with TCB recovery originally planned to
happen no later than March 7, 2023 [67] for platforms
using Intel EPID attestation, jeopardizing any application
of Intel SGX. Only following our disclosure, Intel has
changed this timeline to November 29th, 2022 [66] for some
platforms, with popular SGX-enabled servers and desktops
being updated only in January 2023.

5. Unsealing The Secret Network
It is important to note that the majority of theoretical attacks
that occur on TEEs (SGX in particular) happen within re-
search labs. In reality, common attack vectors occur through
implementation faults that leverage holes in protocol design.
-SCRT Network Graypaper

5.1. Secret Overview
In blockchain systems, smart contracts are stateful pro-

grams that users can interact with. They can make automated

decisions regarding the transfer of assets, from ownership
of virtual property such as Non-fungible Tokens (NFTs), as
well as decentralized finance (DeFi) mechanisms such as
auctions and automated market makers. Most blockchains
are completely transparent by design and all smart contract
state and transaction data can be reviewed by anyone. To re-
gain privacy, the smart contracts community focused mostly
on using zero knowledge proofs [22, 30, 48, 76]. However,
as this incurs considerable performance overhead, several
research projects have proposed an alternative TEE-based
approach [23, 33, 43, 73, 113, 117], by moving the execution
of smart contracts entirely into the enclave.
The SECRET Network. The first TEE-based blockchain
to reach significant adoption is SECRET network, which
launched its smart contracts feature in September 2020, and
has since grown to a total market cap of 150M USD as of
early October 2022. DeFi apps in use today on SECRET
include a Uniswap-like automated market maker and a
Compound-like automated margin lending system. Another
notable application is Private NFTs that can attach encrypted
payloads that only the owner can access.
Overview of the SECRET Architecture. SECRET con-
sists of two components: a consensus protocol based on
Tendermint [28] to commit transactions and to serve as a
bulletin board, and an SGX-based smart contract execution
layer. Tendermint consensus does not use enclaves, rather it
uses Proof of Stake, requiring significant security deposits to
propose blocks. In SECRET, block proposers must be among
the top 80 nodes by stake [109] (a minimum stake of 38,692
SCRT or $35,100 at the time of writing [111]).
SGX-based Smart Contract Execution Setup. Se-
cret’s smart contract execution framework is derived from
Cosmos, but adapted to run within an enclave. To send a
message to a smart contract, users derive an encryption key
from a master public key, consensus_io_exchange_
pubkey, and include the encrypted message in a transac-
tion. The corresponding secret key, derived from the consen-
sus seed, is replicated throughout the network as files sealed
by SGX enclaves. A seperate consensus_state_ikm
key, also derived from the consensus seed, encrypts the
database of the current state, e.g., account balances.
Performing Transactions. Once a transaction is committed
to the network, the enclaves decrypt the message and execute
the contract, updating the encrypted state. The consensus
seed is persistent and has not changed over the lifetime of
the blockchain, allowing all validator nodes to inspect the
blockchain’s state at any time.
New Node Registration. To add new enclave nodes
to the network, SECRET implements a registration process
based on remote attestation. First the new node invokes
ecall_keygen() to create an ephemeral keypair, for
future use to seal the new node’s local copy of the consensus
seed. The corresponding public key, along with a verified
attestation report from IAS, is packaged within a transaction
and published on SECRET’s blockchain.

Observing the transactions published by the joining
node, existing nodes invoke ecall_authenticate_

10

new_node in their own enclave, passing in the verified
attestation report. The ecall verifies the IAS response, checks
that the joining node’s mrenclave value matches the one
used by existing nodes, and verifies that the node’s hardware
platform is secure against known SGX vulnerabilities. If all
checks pass, existing nodes encrypt their consensus seed
using the joining node’s public key, sharing the resulting
ciphertext on the blockchain. Finally, the joining node ob-
serves this ciphertext on the blockchain, and passes it to its
enclave. Upon decryption, the enclave stores the consensus
seed locally using SGX protected FS, avoiding the need to
continuously re-attest upon reboots and platform upgrades.
SECRET’s Integrity and Privacy Guarantees. While
SECRET is designed so that an SGX breach cannot affect
the integrity of the blockchain or allow for theft of funds
or freely issuing new tokens, it nonetheless can eliminate
its privacy guarantees, essentially downgrading SECRET to
an ordinary transparent blockchain and allowing attackers
to read the internal state of all smart contracts.

5.2. Extracting the Consensus Seed
Hardware Setup. We begin our attack by setting up an
SGX-capable CPU which is vulnerable to ÆPIC leak [21].
SECRET’s documentation states4 that nodes are required
to use SGX with Intel’s Server Platform Services (SPS),
leading its community to believe that AEPIC leak did not
affect the network, as no architectures attacked directly
in the paper supported SPS. We thus investigated Rocket
Lake CPUs, as this is the only Xeon architecture which
supports EPID-based attestation and is sufficiently new to
be potentially vulnerable to AEPIC leak. Thus, we acquired
an HPE ProLiant DL20 server equipped with an Intel Xeon
E-2334 (Rocket Lake) CPU and installed Ubuntu 20.04 LTS
with Linux kernel 5.4.0. Finally, despite being reported on
August 2022 Intel did not perform TCB recovery at the time
of writing, allowing our machine to run microcode version
0x53 while still being considered trusted by the IAS.
Node Setup. Next, to obtain a copy of the consensus
seed inside our node’s SGX enclave, we registered our hard-
ware onto the network as a validator node. While joining
SECRET’s active block proposer pool requires a substan-
tial investment, merely running a non-proposing validator
only requires passing attestation. This is a deliberate design
decision made by SECRET, as block explorers, developer-
friendly API endpoints and other services benefit from the
ability to make queries against the encrypted state.
Attacking the Enclave. To guarantee confidential-
ity, the enclave relies on the Intel Protected File Sys-
tem Library to seal and store the seed and key to disk.
More specifically, the consensus seed is sealed using
128-bit AES-GCM and stored as consensus_seed.
sealed in /opt/secret/.sgx_secrets. The SE-
CRET source code reveals that ecall_init_node()

4. During our disclosure process, we discovered that SECRET made this
assertion in error. In particular, SECRET also allows for validator nodes
using non-server machines, thus increasing their exposure to attacks using
other architectures such as Ice-Lake based laptops.

Round Key N

Round Key N+1

Sampled

Recovered

Unknown

Figure 4: A simplified 128-bit AES key schedule for two con-
secutive round keys showing the XOR relationship between byte
triplets, with the sampled (blue), recovered (green) and unknown
(red) bytes.

(in librust_cosmwasm_enclave.signed.so), re-
trieves and expands the AES sealing key to then unseal
the consensus seed. Moreover, the enclave’s symbol table
shows the offset of k0_aes_DecKeyExpansion_NI().
Thus, we simply target ecall_init_node() through
the init_node() function in the Go bindings (libgo_
cosmwasm.so), use a control channel attack [136] to stop
the enclave after the key expansion, and then proceed to
recover the AES key.
AES Key Recovery. Since 128-bit AES performs 10
encryption rounds, the key scheduling algorithms expands
the AES key into 10 round keys, consisting of four 32-bit
words each. As ÆPIC leak can only target data from even
cache lines, and more so only the last three 32-bit words of
every round key, we exploit the redundancy of the AES key
schedule [52] to fully recover one of the round keys, and
thus the AES key. Figure 4 shows the bytes we can sample
from round key N and N +1 using ÆPIC leak in blue. To
compute any word k in round key N + 1, except for the
first, we simply XOR word k− 1 in round key N + 1 with
word k of round key N . Thus, as XOR is symmetric, we
can compute word k − 1 of round key N + 1 given word
k in both round keys. This allows us to identify the AES
key schedule, as well as recover the first word of round key
N + 1 as shown in Figure 4 in green.

Once we recover one of the round keys, we can re-
verse the key schedule to recover the initial AES key.
However, unaware of which round key we recovered, we
must bruteforce the AES key for each index, and try to
decrypt the sealed data using each of the 10 recovered keys.
As authenticated encryption (128-bit AES-GCM) is used,
decryption only succeeds if the authentication tag matches,
allowing us to identify the correct key.
Unsealing the Consensus Seed. After successfully recover-
ing the AES sealing key, we proceeded to decrypt the sealed
files used by SECRET. Since the consensus seed is only 32
bytes in size, the sealed file only consists of a single 4 KiB
block that serves as the root block. Thus we decrypt this
block using the extracted key to obtain the consensus seed.
Extracting EPID keys. Note that the aforementioned AES
key extraction process is not limited to the AES sealing key
used by SGX protected FS, but is also applicable to the
sealing key protecting the machine’s private EPID attestation
key [21, 120, 125, 127]. Demonstrating this empirically,
we were able to extract our server’s EPID key using a
similar methodology. We conjecture that once an attacker
extracts the EPID key from a trusted platform, the attacker

11

can bootstrap an entire SECRET node outside of an SGX
enclave. More specifically, the attacker would generate a
key pair, sign their own quote containing that public key
and the appropriate enclave measurement, and then retrieve
a valid IAS certificate from Intel, whereupon the other node
validates the certificate and encrypts the consensus seed
using the provided public key.

5.3. Decrypting Transactions
As mentioned above, one of the main applications of the

SECRET network is privacy preserving transactions, allow-
ing parties to privately transfer control over digital assets.
While all transactions, including encrypted ones, can be
viewed via common block explorers (e.g., secretnodes.io),
using keys derived from the consensus seed we are able
to directly decrypt any transaction, completely breaching
SECRET’s confidentiality guarantees. To demonstrate this,
we decrypted our own mainnet transaction and obtained its
JSON description.

{"transfer":{"recipient":"secret1...","amount":"1333370"}}

Decrypting Private NFTs. Besides private payments,
another use case for SECRET has been the creation of private
NFTs, such as a collection released by famous movie direc-
tor Quentin Tarantino [78]. Through the use of viewing keys,
the NFT’s current owner can query the exclusive private
metadata and view the contents, hiding it from other network
users. To exemplify the danger of our compromise to such
assets, we created our own private NFT with a hidden image.
We then subsequently breached our NFT’s confidentiality on
SECRET’s mainnet using the extracted consensus seed. See
Figure 5.

Figure 5: Example NFT that we created and then decrypted.

Deanonymizing SECRET. Arguably the most concern-
ing application of our attack, however, is bulk financial
surveillance of SECRET users. With the consensus seed,
we could reconstruct all the confidential account balances
and transfer histories of SNIP-20 fungible tokens, which
include popular bridged assets like Ethereum and the USDC
stablecoin. While users of SECRET desire and expect privacy,

the compromise of the consensus seed threatens them with
comprehensive retroactive surveillance.

6. CyberLink PowerDVD
For our second case study, we investigate the usage

of SGX in CyberLink PowerDVD 20, a popular software
application to play UHD Blu-rays on computers. PowerDVD
provides us with an interesting case study, as its user base
is very different than SECRET’s and consists of a large and
potentially non-technical set of users. As PowerDVD is
closed-source, this involved a significant reverse-engineering
effort to understand its usage of SGX, which we now
describe. Afterwards, we describe our attack on PowerDVD
and AACS2 key exraction. To help with our efforts, we
leveraged EGX to make PowerDVD’s SGX enclave pass
attestation while in debugging mode, thus allowing for in-
trospection as the enclave runs. This is typically impossible
to do with a production-level enclave, which are properly
attested to have SGX’s security guarantees.

6.1. Reversing PowerDVD
While the PowerDVD application contains numerous

files and binaries, there are only a key few that relate directly
to AACS2 and SGX. We list and briefly describe them here:
• CLTA.dll: CyberLink’s Trusted Agent containing Pow-

erDVD’s AACS2 implementation. This DLL is hardened
with Themida [3], a commercial software obfuscator.

• CLTA_SW.dll: Similar to CLTA.dll except not obfus-
cated, and all SGX-related functions are stubbed.

• CLKDE.dll: Provides the CyberLink Key Downloader
Enclave, a production enclave to provision AACS2 keys.

• CLTE.dll: Provides the CyberLink Trusted Enclave, a
production enclave for AACS2 algorithms. This DLL is
encrypted via SGX’s PCL (Protected Code Loader) [57].

Playing UHD-BDs. Upon clicking “Play”, PowerDVD
begins the disc loading process, referencing CLTA.dll
(and AACS2 code), to call the first SGX-related function.
Initializing SGX. PowerDVD first checks if the SGX
driver is properly initialized before loading and calling
into CLTA.dll. If the verification fails, playing should
be aborted as per the AACS protection requirements [39].
Curiously, PowerDVD still tries to play the movie, load-
ing CLTA_SW.dll instead of CLTA.dll. As all high
level SGX-related functions in CLTA_SW.dll are unimple-
mented stubs, playback eventually fails. We cannot explain
the presence of CLTA_SW.dll, and hypothesize that this is
an internal debug module that should not have been shipped.
CLTA.dll Patching. With SGX successfully initialized,
PowerDVD proceeds to call CLTA.dll. To analyze its
contents, we de-obfuscated CLTA.dll’s Themida protec-
tion, allowing for further reverse-engineering. This task was
assisted by the presence of the unprotected and very similar
CLTA_SW.dll, which contains much of the same code, as
well as useful debugging print statements and log messages.

Additional patching of the main PowerDVD executable
was needed to allow it to run with a debugger attached, up
to the point that control flow enters an SGX enclave.

12

Checking For Existing Keys. We can now explore
PowerDVD’s core component involving SGX: the key pro-
visioning process. At this point, CLTA.dll verifies that the
AACS2 device keys exist on the device before continuing. If
CLTA.dll cannot find an encrypted key file at this time, it
assumes that the AACS2 keys need to be updated and begins
the key downloading process from CyberLink’s provisioning
servers. Note that unlike legacy AACS 1.X software players,
PowerDVD does not ship any AACS2 keys, requiring at
least one key download to play AACS2 protected content.
AACS2 Key Provisioning. To download AACS2 keys
CLTA.dll loads CLKDE.dll, the CyberLink Key Down-
loader Enclave, to handle remote attestation and AACS2 key
provisioning. Reverse-engineering CLKDE.dll, we found
CyberLink’s implementation of attestation to be largely stan-
dard, behaving like Intel’s reference implementation [59],
see Section 2.2 for protocol details and Appendix E.1 for a
list of ECALLS and functionality.

Should Remote Attestation succeed, CyberLink’s pro-
visioning server returns a Base64-encoded blob to the Cy-
berLink Key Downloader Enclave. We discovered that the
blob is encrypted with AES-GCM using a static, hardcoded
key and IV, and in fact contains all necessary cryptographic
material required for playing UHD Blu-ray discs.
Blob Sealing. Upon decrypting the blob, the CyberLink
Key Downloader Enclave uses CyberLink’s mrsigner to
seal it for access by any CyberLink signed enclave.

6.2. Attacking PowerDVD
Having reversed-engineered PowerDVD’s SGX use, we

now present an end-to-end attack on Blu-ray DRM, allowing
us to extract AACS2 key material. With these keys, we can
playback UHD-BD movies on any hardware, regardless of
SGX status or availability, as well as clone UHD-BD disks.
Step 1: Obtaining Private Attestation Keys. We observe
that PowerDVD agrees to play AACS2-protected movies on
machines with a GROUP_OUT_OF_DATE attestation status.
Thus, we begin by extracting the SGX attestation keys from
such a machine, by mounting the Foreshadow attack [120]
on an unpatched Skylake i7-6820HQ CPU.
Step 2: Constructing a Rogue Quoting Enclave. Having
obtained private attestation keys, we now craft a Rogue
Quoting Enclave (QE) which subverts SGX’s attestation pro-
cess. In our case, the rogue QE ignores actual measurements
of the enclave for which the Quote is to be generated, sets
the measurement data to some desired values, and follows
the remaining logic of an unsubverted QE in order to sign
the resulting Quote with the keys obtained in Step 1. Finally,
note that as the attestation keys used are provided externally,
the Rogue QE need not be an actual SGX enclave, but in our
case is a mere Python script implementing the same logic.
Step 3: Extracting CLKDE. We now extract CyberLink’s
Key Downloader Enclave (CLKDE) from inside SGX, run-
ning it as a normal binary. We then have our extracted
CLKDE call the Rogue QE from Step 2 to produce a signed
Quote. The Rogue QE in turn signs the extracted CLKDE
using CyberLink’s original mrsigner and mrenclave
values for CLKDE, via the keys provided in Step 1.

Step 4: Obtaining AACS2 Keys. With the extracted
CLKDE receiving a signed Quote with correct mrsigner
and mrenclave values, we use the extracted CLKDE to
contact CyberLink’s AACS2 provisioning service. Being
unable to distinguish our extracted CLKDE logic from a
genuine CLKDE enclave, CyberLink proceeds to provision
our extracted CLKDE application with secret key material
despite it being executed entirely outside of SGX. At this
point, we are able to receive production AACS2 device keys
and host certificates, without ever using SGX hardware.
Step 5: Decrypting Blu-ray Discs. The possession of
AACS2 keys can also be used to entitle software players
other than PowerDVD to play UHD Blu-ray discs. To
demonstrate this, we modified the open-source libaacs
plugin for the VideoLAN VLC video player software to
support the new AACS2 specifications and algorithms we
discovered. When supplied with the keys extracted from
the CyberLink server’s provisioning payload, we were able
to playback an unmodified UHD Blu-ray from a licensed
AACS2 disc drive using VLC, on a Linux machine run-
ning without any SGX support. This constitutes a complete
bypass of AACS2 DRM, as PowerDVD requires both Win-
dows and SGX to operate, thus formerly limiting UHD-BD
playback to only SGX-enabled Windows platforms.

6.3. Extracting The AACS2 Protocol Code
Unlike for AACS 1.0, AACS-LA (the consortium which

maintains AACS standards) decided to not publish any
publicly-available specifications for AACS2 and typically
mandates that any AACS code is obfuscated and/or en-
crypted in some form [39]. For the case of PowerDVD,
the CLTE enclave containing the AACS2 algorithm is en-
crypted on disk, using an SGX feature called Intel SGX PCL
(Protected Code Loader) [57]. To decrypt the code and data
sections of the application, the PCL unseals a symmetric
AES-GCM key, and decrypts the sections in-place.
AACS2 Code Extraction. Inspecting the key blob obtained
in Step 2 of Section 6.2, we discovered that it contains the
AES-GCM key required for decrypting the code implement-
ing AACS2. This in turn allowed us to analyze this protocol,
presenting its implementation in Appendix C.
The Curious Case of CLTA_SW.dll. Finally, we further
analyzed the contents of CLTA_SW.dll. Remarkably, we
discovered that CLTA_SW.dll contains nearly identical
code, strings, and cryptographic constants as the CLTE.dll
enclave. In particular, CLTA_SW.dll contained the code
for the AACS2 algorithm, without any protection. The latter
is significant, as it directly violates AACS-LA’s require-
ment to not publish AACS algorithms without obfuscation
and/or encryption. We thus reaffirm our hypothesis from
Section 6.1, that CLTA_SW.dll is an internal debugging
module that should not have been shipped.

6.4. The AACS2 Protocol
As part of this study, we are also able to provide the

first public presentation and deployment analysis of the
Advanced Access Content System (AACS) 2.0 and 2.1
protocols, as well as do a deep dive into how AACS actually

13

manages keys and revocations in practice, which, while
not directly related to the security of SGX deployments,
may be of independent interest. To summarize briefly, we
note that much of the AACS 2.0 and 2.1 protocols are
similar to the publicly released 1.0 specification [38], with
notable exceptions being an improvement to the traitor-
tracing scheme, an altered Media Key derivation process,
and an update to more modern cryptographic primitives.
The AACS2 protocol seems technically well designed, but is
nonetheless defeated because of reliance on SGX’s security.

We describe the full details in Appendix C for the benefit
of future researchers.

7. Mitigations, Discussion, and Conclusion
In this paper we studied SGX attack techniques, cate-

gorized the impact and information leaked by them, as well
as discussed what countermeasures are available for enclave
developers. We also showed that wide scale deployments of
SGX-based applications can be hindered by the slow update
cycle of CPU microcode. This forces software vendors
into difficult choices between security and usability, which
are often very hard to balance correctly. We now describe
mitigations for SECRET and PowerDVD, as well as general
directions for future TEE designs based on these case studies
and the insights from our study.
SECRET Mitigations. Working with SECRET, the first
action was to revoke SECRET’s developer keys, which
prevented the creation of new attestation reports, thereby
blocking the registration of new nodes. While this reduced
the attack surface, it alone is not sufficient, as vulnerable
machines with existing attestation reports might still be
provisioned with the network’s consensus seed which can
be subsequently extracted.

The root cause of our attack is that Intel’s IAS server
still reported machines vulnerable to xAPIC and MMIO is-
sues [10, 11, 12, 21] as trusted for multiple month after these
vulnerabilities were made public. Luckily, in addition to the
machine’s security status, attestation reports also contain
the group-id of the attesting machine, which uniquely
identify its CPU architecture and microcode version. While
Intel does not publish this mapping, we have worked with
SECRET and Intel to make sure that group-id’s repre-
senting machines vulnerable to xAPIC [12] issues are not
allowed to be registered on the SECRET network.

However, SECRET still allows machines affected by
MMIO issues [10, 11] to be registered as validator nodes.
With TCB recovery for some popular SGX-enabled plat-
forms scheduled for January 2023 [66], further attacks on
the SECRET network might be possible.
Hard Fork and New Consensus Seed. As Intel’s xAPIC
and MMIO issues [10, 11, 12, 21] have been public since
August 2022, it is impossible to ensure the confidentiality
of the network’s current consensus seed. This is concerning,
as it allows attackers to decrypt the network’s entire state.

While SECRET’s current protocol makes it quite diffi-
cult to update the consensus seed, SECRET does plan to
implement a hard fork in its current blockchain, moving
the new chain to a freshly generated seed. While ad-hoc

measures such as deliberate erasure of the existing seed was
performed by node operators, it is the unfortunate reality that
the privacy of all transactions present in the current chain
should assume to be compromised.
PowerDVD Mitigations. The deprecation of SGX on
client-oriented hardware, together with PowerDVD’s likely
audience of non-technical users, poses a significant chal-
lenge in obtaining a secure client-oriented deployment. In
particular, having to support older hardware which cannot
obtain trusted status due to numerous SGX side channel vul-
nerabilities [21, 31, 61, 62, 63, 64, 65, 68, 94, 103, 108, 120,
122, 123, 127] puts PowerDVD at risk of compromise. We
thus recommend that PowerDVD divides its user base into
small groups, provisions each group with different AACS
keys, employs the AACS 2.1 traitor tracing mechanism. In
case a 4K copy of a Blu-ray disk is discovered, PowerDVD
can quickly revoke the compromised key, preventing it from
further compromising future disk releases.
Future Designs of Trusted Execution Environments. Fol-
lowing from our overview of attacks and our discussion of
the mitigations in Section 3, future research should look to
generalize the idea of constant-time code for attacks where
inferring access patterns can be used to extract sensitive
data. We also looked at the current mitigation strategies for
attacks that leak enclave data, which involve flushing various
affected caches and buffers on enclave entry and exit, and
ensuring other CPU threads and cores cannot poison these
caches and buffers or infer sensitive data from them. As we
expect to see more similar vulnerabilities in the future, we
expect them to require a TCB recovery as well as similar
mitigations. Finally, we discussed several improvements to
consider for the SGX swapping mechanism, the page table
management and interrupt handling to harden Intel SGX
against these attacks.
Faster and Seamless TCB Recovery. From a usability
perspective, PowerDVD cannot expect users to continuously
install BIOS updates to keep their system in TRUSTED
status. Thus, PowerDVD allows SGX platforms to be in
GROUP_OUT_OF_DATE status to playback AACS2 con-
tent. This choice means that an attacker can use a number
of attacks outlined in Section 3 to extract Intel’s attestations
keys and then use these to extract AACS2 keys. Instead
of having motherboard vendors integrate microcode updates
as part of BIOS updates that users of SGX would then
have to install, one possible solution would be to shift this
responsibility to the Intel Management Engine (ME), such
that Intel can transparently deploy SGX-related microcode
updates and perform the TCB recovery through the Intel ME
independently of the motherboard vendors. Of course, as
moving this responsibility to the Intel ME comes with many
unique challenges, we leave this open to future research and
discussion.
Planning TCB Recovery. As discussed in Section 4, it can
take quite a while from the disclosure of an SGX vulner-
ability to actually deploying BIOS updates containing the
appropriate microcode update to perform the TCB recovery.
With the original TCB recovery data planned to be March 7,

14

2023 for the xAPIC and MMIO issues, the SECRET network
would have been vulnerable for seven months after the
disclosure date. Thus, for enclave developers it is paramount
to push Intel and partners to move such TCB recovery dates
to be as early as possible to minimize the risk and impact
from these vulnerabilities. Furthermore, given the history of
SGX attacks, as outlined in Section 3, enclave developers
should expect more vulnerabilities to be discovered and
disclosed. As such, enclave developers must understand the
implications and potential data leakages of different types
of attacks and what needs to be done to protect against
them. It is also critically important for enclave developers
to carefully lay out a TCB recovery plan, in which they
prevent machines from running their enclave on affected
machines the moment a vulnerability is known to prevent
these machines from acquiring sensitive data to defend
against attackers that are tipped off by the public disclosure.
Finally, they need to carefully think about how to invalidate
sensitive data on platforms that already executed the enclave
and acquired sensitive data, while the platform was trusted,
as an attacker can now extract this data after the fact.

Acknowledgments
This work was supported by the Air Force Office of

Scientific Research (AFOSR) under award number FA9550-
20-1-0425; an ARC Discovery Early Career Researcher
Award DE200101577; an ARC Discovery Project number
DP210102670; the Blavatnik ICRC at Tel-Aviv University;
the National Science Foundation under grant CNS-1954712,
CNS-2047991, CNS-2112726 and CNS-1943499; and gifts
from Intel and Qualcomm.

Parts of this work were undertaken while Yuval Yarom
was affiliated with Data61, CSIRO.

References
[1] Intel Product Specification Advanced Search. In-

tel. https://ark.intel.com/content/www/us/en/ark/
search/featurefilter.html. 23

[2] PowerDVD. CyberLink. https://www.cyberlink.com/
products/powerdvd-ultra/features en US.html. 2

[3] Themida. Oreans. https://www.oreans.com/Themida.
php. 12

[4] SA-00115. Intel, May 2018. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00115.html. 9

[5] SA-00161. Intel, August 2018. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00161.html. 9

[6] SA-00233. Intel, May 2019. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00233.html. 9

[7] SA-00320. Intel, June 2020. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00320.html. 9

[8] SA-00329. Intel, January 2020. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00329.html. 9

[9] SA-00389. Intel, November 2020.
https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00389.html. 9

[10] SA-00615. Intel, June 2022. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00615.html. 2, 3, 10,
14

[11] SA-00645. Intel, June 2022. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00645.html. 2, 3, 10,
14

[12] SA-00657. Intel, August 2022. https:
//www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00657.html. 2, 3, 5,
10, 14

[13] Alejandro Cabrera Aldaya, Billy Bob Brumley, So-
haib ul Hassan, Cesar Pereida Garcı́a, and Nicola
Tuveri. Port contention for fun and profit. In IEEE
SP, 2019. 5

[14] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, François Dupressoir, and Michael Emmi. Ver-
ifying constant-time implementations. In USENIX
Security, pages 53–70, 2016. 6

[15] Ittai Anati, Shay Gueron, Simon Johnson, and Vin-
cent Scarlata. Innovative technology for CPU based
Attestation and Sealing. In Proceedings of the 2nd
International Workshop on Hardware and Architec-
tural Support for Security and Privacy, volume 13,
2013. 3, 4

[16] Arm. Arm TrustZone technology. https://developer.
arm.com/ip-products/security-ip/trustzone. 1

[17] Gilles Barthe, Gustavo Betarte, Juan Diego Campo,
Carlos Daniel Luna, and David Pichardie. System-
level non-interference for constant-time cryptography.
In CCS, pages 1267–1279, 2014. 6

[18] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX ATC, 2005. 20

[19] Daniel J Bernstein and Bo-Yin Yang. Fast constant-
time GCD computation and modular inversion.
TCHES, 2019. 6

[20] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The guard’s
dilemma: Efficient code-reuse attacks against Intel
SGX. In USENIX Security, 2018. 5, 6

[21] Pietro Borrello, Andreas Kogler, Martin Schwarzl,
Moritz Lipp, Daniel Gruss, and Michael Schwarz.
ÆPIC leak: Architecturally leaking uninitialized data
from the microarchitecture. In USENIX Security,
2022. 2, 3, 5, 7, 8, 10, 11, 14

[22] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian
Miers, Pratyush Mishra, and Howard Wu. Zexe:
Enabling decentralized private computation. In IEEE
SP, 2020. 10

[23] Mic Bowman, Andrea Miele, Michael Steiner, and
Bruno Vavala. Private data objects: an overview.
arXiv preprint arXiv:1807.05686, 2018. 10

[24] Ferdinand Brasser, Urs Müller, Alexandra
Dmitrienko, Kari Kostiainen, Srdjan Capkun, and

15

https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html
https://www.cyberlink.com/products/powerdvd-ultra/features_en_US.html
https://www.cyberlink.com/products/powerdvd-ultra/features_en_US.html
https://www.oreans.com/Themida.php
https://www.oreans.com/Themida.php
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00320.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00320.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00320.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00329.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00329.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00329.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00645.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00645.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00645.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

Ahmad-Reza Sadeghi. Software grand exposure:SGX
cache attacks are practical. In WOOT, 2017. 1, 5, 20

[25] Ernie Brickell and Jiangtao Li. Enhanced privacy
id from bilinear pairing. Cryptology ePrint Archive,
Report 2009/095, 2009. https://ia.cr/2009/095. 22

[26] Ernie Brickell and Jiangtao Li. Enhanced privacy
ID from bilinear pairing for hardware authentication
and attestation. International Journal of Information
Privacy, Security and Integrity 2, 1(1):3–33, 2011. 4

[27] Derek Bruening and Saman Amarasinghe. Efficient,
transparent, and comprehensive runtime code manip-
ulation. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering . . . ,
2004. 20

[28] Ethan Buchman. Tendermint: Byzantine fault toler-
ance in the age of blockchains. PhD thesis, University
of Guelph, 2016. 10

[29] Robert Buhren, Hans-Niklas Jacob, Thilo Krachen-
fels, and Jean-Pierre Seifert. One glitch to rule
them all: Fault injection attacks against AMD’s secure
encrypted virtualization. In CCS, 2021. 1

[30] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani,
and Dan Boneh. Zether: Towards privacy in a smart
contract world. In International Conference on Finan-
cial Cryptography and Data Security, pages 423–443.
Springer, 2020. 10

[31] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on Meltdown-resistant CPUs. In CCS, 2019. 5,
7, 8, 14

[32] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten-Hwang Lai. SgxPectre:
Stealing Intel secrets from SGX enclaves via specu-
lative execution. In Euro S&P, 2019. 5, 6

[33] Raymond Cheng, Fan Zhang, Jernej Kos, Warren
He, Nicholas Hynes, Noah Johnson, Ari Juels, An-
drew Miller, and Dawn Song. Ekiden: A platform
for confidentiality-preserving, trustworthy, and per-
formant smart contracts. In EuroS&P, 2019. 10

[34] Chitchanok Chuengsatiansup, Daniel Genkin, Yuval
Yarom, and Zhiyuan Zhang. Side-channeling the
Kalyna key expansion. In CT-RSA, pages 272–296,
2022. 5

[35] Tobias Cloosters, Michael Rodler, and Lucas Davi.
TeeRex: Discovery and exploitation of memory cor-
ruption vulnerabilities in SGX enclaves. USENIX
Security, 2020. 22

[36] Tobias Cloosters, Johannes Willbold, Thorsten Holz,
and Lucas Davi. SGXFuzz: Efficiently synthesiz-
ing nested structures for SGX enclave fuzzing. In
USENIX Security, 2022. 6

[37] AACS-LA Consortium. Advanced Access Content
System (AACS). https://aacsla.com/. 23

[38] AACS-LA Consortium. Advanced access content sys-
tem (aacs): Introduction and common cryptographic
elements. https://aacsla.com/wp-content/uploads/

2019/02/AACS Spec Common 0.91.pdf, 2006. 14,
23

[39] AACS-LA Consortium. Advanced access content
system (”aacs”): Adopter agreement. https:
//aacsla.com/wp-content/uploads/2021/05/AACS-
Adopter-Agreement 20121115 review-only.pdf,
2009. 12, 13

[40] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptology ePrint Archive 2016/086,
2016. 1

[41] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde,
Prateek Saxena, and Zhiping Cai. SmashEx: Smash-
ing SGX enclaves using exceptions. In CCS, 2021.
5, 6

[42] Fergus Dall, Gabrielle De Micheli, Thomas Eisen-
barth, Daniel Genkin, Nadia Heninger, Ahmad
Moghimi, and Yuval Yarom. CacheQuote: Efficiently
recovering long-term secrets of SGX EPID via cache
attacks. TCHES, 2018. 1, 5, 20

[43] Poulami Das, Lisa Eckey, Tommaso Frassetto, David
Gens, Kristina Hostáková, Patrick Jauernig, Sebastian
Faust, and Ahmad-Reza Sadeghi. FastKitten: Practi-
cal smart contracts on bitcoin. In USENIX Security,
2019. 10

[44] Enarx. Enarx: WebAssembly + confidential comput-
ing. https://enarx.dev, 2022. 6

[45] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. Branch-
scope: A new side-channel attack on directional
branch predictor. ACM SIGPLAN Notices, 53(2):693–
707, 2018. 5

[46] Fortanix Inc. Fortanix runtime encryption plat-
form. https://www.fortanix.com/assets/Fortanix
RTE Platform Whitepaper.pdf, 2019. 6

[47] Cesar Pereida Garcı́a and Billy Bob Brumley.
Constant-time callees with variable-time callers. In
USENIX Security, 2017. 5

[48] Lior Goldberg, Shahar Papini, and Michael Ri-
abzev. Cairo – a Turing-complete STARK-friendly
CPU architecture. Cryptology ePrint Archive, Paper
2021/1063, 2021. URL https://eprint.iacr.org/2021/
1063. https://eprint.iacr.org/2021/1063. 10

[49] Johannes Götzfried, Moritz Eckert, Sebastian
Schinzel, and Tilo Müller. Cache attacks on Intel
SGX. In EuroSec, 2017. 1, 20

[50] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and
Raoul Strackx. Off-limits: Abusing legacy x86 mem-
ory segmentation to spy on enclaved execution. In
ESSoS, 2018. 5

[51] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In USENIX ATC, 2017. 5

[52] J Alex Halderman, Seth D Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A Calan-
drino, Ariel J Feldman, Jacob Appelbaum, and Ed-
ward W Felten. Lest we remember: cold-boot attacks
on encryption keys. Communications of the ACM, 52
(5):91–98, 2009. 11

16

https://ia.cr/2009/095
https://aacsla.com/
https://aacsla.com/wp-content/uploads/2019/02/AACS_Spec_Common_0.91.pdf
https://aacsla.com/wp-content/uploads/2019/02/AACS_Spec_Common_0.91.pdf
https://aacsla.com/wp-content/uploads/2021/05/AACS-Adopter-Agreement_20121115_review-only.pdf
https://aacsla.com/wp-content/uploads/2021/05/AACS-Adopter-Agreement_20121115_review-only.pdf
https://aacsla.com/wp-content/uploads/2021/05/AACS-Adopter-Agreement_20121115_review-only.pdf
https://enarx.dev
https://www.fortanix.com/assets/Fortanix_RTE_Platform_Whitepaper.pdf
https://www.fortanix.com/assets/Fortanix_RTE_Platform_Whitepaper.pdf
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063

[53] Mike Hamburg. Accelerating AES with vector per-
mute instructions. In CHES, 2009. 6

[54] Gael Hofemeier and Robert Chesebrough. Introduc-
tion to Intel AES-NI and Intel secure key instructions.
Intel, White Paper, 62, 2012. 6

[55] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang
Hao, Pei Zhao, Jian Zhai, and Mingshu Li. Bluethun-
der: A 2-level directional predictor based side-channel
attack against SGX. 2020. 5

[56] Intel Software Guard Extensions for Linux OS. Intel,
. https://github.com/01org/linux-sgx. 7

[57] Intel. Intel Software Guard Extensions (SGX) Pro-
tected Code Loader for Linux OS. https://github.com/
intel/linux-sgx-pcl, . 12, 13

[58] Intel® 64 and IA-32 architectures software devel-
oper’s manual combined volumes: 1, 2A, 2B, 2C, 2D,
3A, 3B, 3C, 3D, and 4. Intel, . https://cdrdv2.intel.
com/v1/dl/getContent/671200. 20

[59] Intel. Code sample: Intel software guard extensions
remote attestation end-to-end example, . URL
https://software.intel.com/content/www/us/en/
develop/articles/code-sample-intel-software-
guard-extensions-remote-attestation-end-to-end-
example.html. 13

[60] Intel Software Guard Extensions SDK for Linux
OS. Intel, 2016. https://01.org/sites/default/files/
documentation/intel sgx sdk developer reference
for linux os pdf.pdf. 4

[61] Intel. Deep dive: Intel analysis of microarchitectural
data sampling. https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-analysis-
microarchitectural-data-sampling, May 2019. 14

[62] Intel. Deep dive: Intel transactional synchronization
extensions (Intel TSX) asynchronous abort.
https://software.intel.com/security-software-
guidance/insights/deep-dive-intel-transactional-
synchronization-extensions-intel-tsx-asynchronous-
abort, Nov 2019. 14

[63] Intel. 2019.2 IPU – Intel SGX with
Intel processor graphics update advisory.
https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00219.html, November 2019.
5, 7, 8, 14

[64] Intel. Deep dive: Load value injection.
=https://software.intel.com/security-software-
guidance/insights/deep-dive-load-value-injection,
Mar 2020. 14

[65] Intel. L1D eviction sampling. https://software.
intel.com/security-software-guidance/software-
guidance/l1d-eviction-sampling, Jan 2020. 14

[66] Intel. Intel® software guard extensions (Intel®
SGX) trusted computing base (TCB) recovery
plans for stale data read from legacy xAPIC.
http://archive.today/2022.11.28-035641/https://www.
intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/resources/q4-
2022-intel-sgx-tcb-recovery-guidance.html, 2022. 3,
10, 14

[67] Intel. Intel® software guard extensions (Intel®
SGX) trusted computing base (TCB) recovery
plans for stale data read from legacy xAPIC.
https://web.archive.org/web/20221020202933/https:
//www.intel.cn/content/www/cn/zh/developer/articles/
technical/software-security-guidance/resources/intel-
sgx-software-and-tcb-recovery-guidance.html, 2022.
3, 10

[68] Intel. Intel processors MMIO stale data advisory.
https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00615.html, jun 2022. 5, 7,
8, 14

[69] Prerit Jain, Soham Jayesh Desai, Ming-Wei Shih, Tae-
soo Kim, Seong Min Kim, Jae-Hyuk Lee, Changho
Choi, Youjung Shin, Brent Byunghoon Kang, and
Dongsu Han. OpenSGX: An open platform for SGX
research. In NDSS, 2016. 20, 21

[70] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo
Kim. SGX-Bomb: Locking down the processor via
Rowhammer attack. In SysTEX, 2017. 1, 20

[71] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie
Brickell, and Frank Mckeen. Intel software guard ex-
tensions: EPID provisioning and attestation services.
White paper, 2016. 4

[72] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, 2016. 1

[73] Gabriel Kaptchuk, Ian Miers, and Matthew Green.
Giving state to the stateless: Augmenting trustworthy
computation with ledgers. Cryptology ePrint Archive,
2017. 10

[74] Zijo Kenjar, Tommaso Frassetto, David Gens,
Michael Franz, and Ahmad-Reza Sadeghi. V0LTpwn:
Attacking x86 processor integrity from software. In
USENIX Security, 2020. 5, 8

[75] Paul Kocher, Jann Horn, Anders Fogh, , Daniel
Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. In IEEE Symposium
on Security and Privacy, 2019. 1

[76] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai
Wen, and Charalampos Papamanthou. Hawk: The
blockchain model of cryptography and privacy-
preserving smart contracts. In IEEE SP, 2016. 10

[77] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnau-
tov, Bohdan Trach, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. SGXBOUNDS: Memory safety
for shielded execution. In EuroSys, 2017. 6

[78] SCRT Labs. Tarantino nfts. https://tarantinonfts.com/,
2022. 12

[79] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim,
Marcus Peinado, and Brent ByungHoon Kang. Hack-
ing in darkness: Return-oriented programming against
secure enclaves. In USENIX Security, 2017. 5, 6

[80] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo
Kim, Hyesoon Kim, and Marcus Peinado. Inferring
fine-grained control flow inside sgx enclaves with

17

https://github.com/01org/linux-sgx
https://github.com/intel/linux-sgx-pcl
https://github.com/intel/linux-sgx-pcl
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
=https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
=https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://tarantinonfts.com/

branch shadowing. In USENIX Security, 2017. 5,
6

[81] Frank Li and Vern Paxson. A large-scale empirical
study of security patches. In CCS, 2017. 10

[82] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin.
CrossLine: Breaking “security-by-crash” based mem-
ory isolation in AMD SEV. In CCS, 2021. 1

[83] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang
Li, and Yueqiang Cheng. TLB poisoning attacks on
AMD secure encrypted virtualization. In ACSAC,
2021. 1

[84] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang
Li, and Yueqiang Cheng. CipherLeaks: Breaking
constant-time cryptography on AMD SEV via the
ciphertext side channel. In USENIX Security, 2021.
1

[85] Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX
Security Symposium, 2018. 1

[86] Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and
Daniel Gruss. PLATYPUS: Software-based power
side-channel attacks on x86. In IEEE SP, 2021. 5, 8

[87] Mitsuru Matsui and Junko Nakajima. On the power
of bitslice implementation on Intel Core2 processor.
In CHES, 2007. 6

[88] Plato Mavropoulos. MC Extractor. https://github.
com/platomav/MCExtractor. 9

[89] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP@
ISCA, page 10, 2013. 3

[90] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In CHES, 2017. 1, 5, 20

[91] Ahmad Moghimi, Jan Wichelmann, Thomas Eisen-
barth, and Berk Sunar. MemJam: A false dependency
attack against constant-time crypto implementations.
International Journal of Parallel Programming, 47
(4):538–570, 2019. 5

[92] Daniel Moghimi, Jo Van Bulck, Nadia Heninger,
Frank Piessens, and Berk Sunar. CopyCat: Controlled
instruction-level attacks on enclaves. In USENIX
Security, 2020. 5

[93] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. Severed: Subverting AMD’s virtual
machine encryption. In EuroSec, 2018. 1

[94] Kit Murdock, David Oswald, Flavio D Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens.
Plundervolt: Software-based fault injection attacks
against Intel SGX. In IEEE SP, 2020. 5, 8, 14

[95] Dalit Naor, Moni Naor, and Jeff Lotspiech. Revo-
cation and tracing schemes for stateless receivers.
Cryptology ePrint Archive, Report 2001/059, 2001.

https://ia.cr/2001/059. 24
[96] Bernard Ngabonziza, Daniel Martin, Anna Bailey,

Haehyun Cho, and Sarah Martin. TrustZone ex-
plained: Architectural features and use cases. In CIC,
pages 445–451, 2016. 1

[97] Olga Ohrimenko, Felix Schuster, Cedric Fournet,
Aastha Mehta, Sebastian Nowozin, Kapil Vaswani,
and Manuel Costa. Oblivious Multi-Party machine
learning on trusted processors. In USENIX Security,
2016. 6

[98] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: the case of AES.
In CT-RSA, 2006. 1

[99] Colin Percival. Cache missing for fun and profit,
2005. 1

[100] Sandro Pinto and Nuno Santos. Demystifying Arm
TrustZone: A comprehensive survey. ACM CSUR, 51
(6):1–36, 2019. 1

[101] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and
Gang Qu. VoltJockey: Breaching TrustZone by
software-controlled voltage manipulation over multi-
core frequencies. In CCS, 2019. 1

[102] Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage against the machine clear: A
systematic analysis of machine clears and their im-
plications for transient execution attacks. In USENIX
Security, 2021. 5, 6

[103] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CROSSTALK: Specu-
lative data leaks across cores are real. In IEEE SP,
2021. 5, 7, 8, 14

[104] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing digital side-channels through obfuscated ex-
ecution. In USENIX Security, 2015. 6

[105] Keegan Ryan. Hardware-backed heist: Extracting
ECDSA keys from Qualcomm’s TrustZone. In CCS,
2019. 1

[106] Michael Schwarz and Daniel Gruss. How trusted
execution environments fuel research on microarchi-
tectural attacks. 2020. 4

[107] Michael Schwarz, Samuel Weiser, Daniel Gruss,
Clémentine Maurice, and Stefan Mangard. Malware
guard extension: Using SGX to conceal cache attacks.
In DIMVA, 2017. 5

[108] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher,
and Daniel Gruss. ZombieLoad: Cross-privilege-
boundary data sampling. In CCS, 2019. 5, 7, 8,
14

[109] SCRT. Staking secrets: A live guide to staking
and delegating scrt. https://scrt.network/blog/staking-
secrets-guide-to-staking-delegating-scrt, 2020. 10

[110] SCRT. Secret network overview - private smart con-
tracts on the blockchain. https://scrt.network/about/
about-secret-network/, 2022. 2

[111] SCRT. Keplr dashboard. https://wallet.keplr.app/
chains/secret-network, 2022. 2, 10

[112] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim,

18

https://github.com/platomav/MCExtractor
https://github.com/platomav/MCExtractor
https://ia.cr/2001/059
https://scrt.network/blog/staking-secrets-guide-to-staking-delegating-scrt
https://scrt.network/blog/staking-secrets-guide-to-staking-delegating-scrt
https://scrt.network/about/about-secret-network/
https://scrt.network/about/about-secret-network/
https://wallet.keplr.app/chains/secret-network
https://wallet.keplr.app/chains/secret-network

Ming-Wei Shih, Insik Shin, Dongsu Han, and Taesoo
Kim. SGX-Shield: Enabling address space layout
randomization for SGX programs. In NDSS, 2017.
6

[113] Rohit Sinha, Sivanarayana Gaddam, and Ranjit Ku-
maresan. LucidiTEE: A TEE-blockchain system for
policy-compliant multiparty computation with fair-
ness. Cryptology ePrint Archive, 2019. 10

[114] Dimitrios Skarlatos, Mengjia Yan, Bhargava
Gopireddy, Read Sprabery, Josep Torrellas, and
Christopher W Fletcher. Microscope: Enabling
microarchitectural replay attacks. In ISCA, 2019. 5

[115] Jiayuan Sui and Douglas R Stinson. A critical anal-
ysis and improvement of AACS drive-host authenti-
cation. In ACISP, pages 37–52, 2008. 23

[116] Shih-Wei Sun, Chun-Shien Lu, and Pao-Chi Chang.
AACS-compatible multimedia joint encryption and
fingerprinting: Security issues and some solutions.
Signal Processing: Image Communication, 23(3):
179–193, 2008. 23

[117] Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov,
and Prateek Saxena. Obscuro: A bitcoin mixer using
trusted execution environments. In ACSAC, 2018. 10

[118] Jo Van Bulck, Frank Piessens, and Raoul Strackx.
SGX-Step: A practical attack framework for precise
enclave execution control. In SysTEX, 2017. 1, 5, 20

[119] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza,
Frank Piessens, and Raoul Strackx. Telling your
secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In USENIX Security,
2017. 5

[120] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution.
In USENIX Security Symposium, 2018. 1, 2, 3, 5, 7,
8, 11, 13, 14, 20, 22, 23

[121] Jo Van Bulck, Frank Piessens, and Raoul Strackx.
Nemesis: Studying microarchitectural timing leaks in
rudimentary CPU interrupt logic. In CCS, 2018. 5

[122] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking transient execution through microar-
chitectural load value injection. In IEEE SP, 2020.
5, 6, 14

[123] Stephan van Schaik, Alyssa Milburn, Sebastian
Österlund, Pietro Frigo, Giorgi Maisuradze, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida. Rogue
in-flight data load. In IEEE SP, 2019. 1, 5, 7, 8, 14,
20

[124] Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Addendum a to
RIDL: Rogue in-flight data load. 2019. 7

[125] Stephan van Schaik, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. SGAxe: How SGX fails in practice.

https://sgaxe.com/files/SGAxe.pdf, 2020. 1, 3, 11, 20,
22, 23

[126] Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Addendum 2
to RIDL: Rogue in-flight data load. 2020. 7

[127] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. CacheOut: Leaking
data on Intel CPUs via cache evictions. In IEEE SP,
2021. 1, 3, 5, 7, 8, 11, 14, 20, 22, 23

[128] Jose Rodrigo Sanchez Vicarte, Benjamin Schreiber,
Riccardo Paccagnella, and Christopher W Fletcher.
Game of threads: Enabling asynchronous poisoning
attacks. In ASPLOS, 2020. 5, 6

[129] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun,
Yiming Jing, Ran Duan, Long Li, Yulong Zhang, Tao
Wei, and Zhiqiang Lin. Towards memory safe enclave
programming with Rust-SGX. In CCS, 2019. 6

[130] Pei Wang, Yu Ding, Mingshen Sun, Huibo Wang,
Tongxin Li, Rundong Zhou, Zhaofeng Chen, and
Yiming Jing. Building and maintaining a third-party
library supply chain for productive and secure SGX
enclave development. In ICSE, 2020. 6

[131] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yin-
qian Zhang, XiaoFeng Wang, Vincent Bindschaedler,
Haixu Tang, and Carl A. Gunter. Leaky cauldron on
the dark land: Understanding memory side-channel
hazards in SGX. In CCS, 2017. 1, 5, 20

[132] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and
Rüdiger Kapitza. AsyncShock: Exploiting synchro-
nisation bugs in Intel SGX enclaves. In ESORICS,
2016. 5, 6

[133] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner.
Single trace attack against RSA key generation in
Intel SGX SSL. In AsiaCCS, 2018. 1, 20

[134] Jan Werner, Joshua Mason, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. The
severest of them all: Inference attacks against secure
virtual enclaves. In CCS, 2019. 1

[135] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No security without
integrity: Breaking integrity-free memory encryption
with minimal assumptions. In IEEE SP, 2020. 1

[136] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In IEEE SP,
2015. 5, 11

[137] Yuval Yarom and Naomi Benger. Recov-
ering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack.
Cryptology ePrint Archive, 2014. 5

[138] Yuval Yarom and Katrina Falkner. Flush+Reload:
A high resolution, low noise, L3 cache side-channel
attack. In USENIX Security, 2014. 1

[139] Ning Zhang, Kun Sun, Deborah Shands, Wenjing
Lou, and Y Thomas Hou. TruSpy: Cache side-
channel information leakage from the secure world
on ARM devices. IACR Cryptology ePrint Archive

19

https://sgaxe.com/files/SGAxe.pdf

2016/980, 2016. 1

Appendix A.
Emulated Guard eXtensions

Unfortunately, despite numerous SGX breaches [24, 42,
49, 70, 90, 118, 120, 123, 125, 127, 131, 133], there does
not appear to be any tooling primarily focused on reverse-
engineering enclaves or running unmodified, production-
quality enclaves in a variety of different ecosystems, in-
cluding ones without actual SGX hardware.

In this section we tackle this problem and support the
reverse-engineering efforts in Section 5 and Section 6 by
presenting Emulated Guard eXtensions (EGX), a frame-
work that runs arbitrary SGX enclaves without actual
SGX hardware (albeit without any of the typical hard-
ware security properties). We note that building EGX in-
volves unique challenges not considered by other emulators
(e.g., OpenSGX [69]), including compatibility with existing
(sometimes obfuscated) binaries and supporting attestation
using extracted keys.

To emulate arbitary enclaves, we must support the
SGX instruction set, loading enclaves into memory, and
application-enclave or enclave-CPU interactions. We use the
publicly available Intel 64 and IA-32 Architectures Software
Developer’s Manual [58] to develop a framework featuring
two different methods that achieve our goal: a full-system
emulation mode virtualizing SGX hardware in QEMU [18],
and an instrumentation mode modifying code at runtime
using DynamoRIO [27]. This two-method approach offers
the best of both worlds for SGX emulation, as QEMU targets
more architectures, while DynamoRIO offers performance
on x86.

We now discuss emulating the SGX instruction set, how
both approaches address loading enclaves, and handling
transitions from the application to and from the enclave.

A.1. The SGX ISA and Supporting Software
The SGX Instruction Set introduces the enclv, encls

and the enclu instructions to interact with SGX from a
virtual environment, the operating system, and the SGX
application respectively. More specifically, the operating
system uses encls to manage enclave while the application
uses enclu to interact with enclaves. As the rax register
determines which leaf function to call, our framework in-
spects rax and calls the corresponding helper function for
the leaf as well.

Of particular interest are the following categories of
instructions: enclave creation (epa, ecreate, eadd,
eextend, einit), debugging (edbgrd, edbgwr), en-
clave control flow (eenter, eexit, eresume), crypto-
graphic functionality (ereport, egetkey). EGX imple-
ments these instructions as a series of helper functions that
emulate the behavior of the actual instructions. The helper
functions are the same for both modes, but differ in how
enclave memory is handled. While instrumentation mode
can directly reference memory, as the enclave lives in the
application’s address space, full-system emulation handles

memory accesses through a helper function, as the enclave
lives in guest physical memory.

Intel also provides a number of software components
that make use of the SGX instruction set: the SGX driver, to
manage SGX enclaves; the SGX Platform SoftWare (PSW),
to provide remote attestation services; the Trusted RunTime
System (tRTS), to interact with the outside world; and
the Untrusted RunTime System (uRTS), to interact with
enclaves. The full-system emulation mode can simply run all
of these software components, whereas the instrumentation
mode replaces some functionality of the SGX uRTS, and
only needs to handle enclave interactions via the enclu
instruction.

A.2. Enclave Loading
While we can piggyback on the existing implementation

of SGX uRTS in the full-system emulation mode, the instru-
mentation mode has to replace certain functions provided by
uRTS responsible for enclave management and interaction.
More specifically, it replaces the sgx_create_enclave
and sgx_destroy_enclave functions with simulated
versions that are responsible for loading and managing SGX
enclaves, and cleaning up SGX enclaves respectively.
File Formats. Enclaves are distributed in the ELF
(Linux) and PE (Microsoft Windows) format respectively,
with a special metadata section (.note.sgxmetadata
or sgxmeta) to provide information to the loader. Our
implementation of sgx_create_enclave first parses
the metadata to determine the enclave size to then allocate
sufficient memory.
Program Segments. To ensure that debugging symbols are
available to DynamoRIO, our loader first maps in the entire
enclave file. Then, as is conventional, it iterates over the
program header to map in the program segments. Finally,
the loader parses the patch entries that are unique to Linux
enclaves to patch the enclave memory with the correct data.
Memory Layout. Next the loader determines the exact
memory layout of the SGX enclave required to set up per-
thread data, stacks and the heap. On Linux, the enclave
file contains layout entries that describe the memory layout
needed, whereas on Windows the metadata describes the
stack size, the heap size and the number of threads to
support.
Memory Protection. Once the enclave memory has
been set up, our loader applies the correct memory pro-
tections according to the program headers and the mem-
ory layout. To keep track of where the enclave resides in
memory, as well as various bits of information such as
the enclave and signer measurement, the loader maintains
a mapping of enclave IDs, such that later calls to functions
like sgx_destroy_enclave can operate in the context
of the appropriate enclave by simply looking up the book-
keeping data for the given enclave ID.
Enclave Measurement. To verify that an enclave has
not been tampered with prior to execution, mrenclave
is computed over the entire contents as described in Sec-
tion 2. Specifically, the mrenclave value is a SHA-256

20

sum computed with inputs from ecreate, eadd, and
eextend. In full-system emulation mode, we implement
these instructions and have full control over how the value
is calculated, allowing us to load a modified enclave that
still has its original mrenclave value. In instrumentation
mode, EGX simply assumes that the enclave measurement
provided by the enclave is correct and does not validate it,
though it does compute the mrsigner field by calculating
the SHA-256 hash of the modulus.

A.3. Enclave Interactions
After setup, we must support the various application-

enclave and enclave-CPU interactions. More specifically:
transitions between application and enclave (ECALL-
s/OCALLs), access to per-thread structures (segmenta-
tion), asynchronous exits interrupting the enclave execution
(AEX), information regarding the SGX status of the system
(cpuid and MSR).
ECALLs/OCALLs. The application can perform ECALLs
to enclave functions by setting the appropriate registers
and issuing eenter. Similarly, SGX enclaves can issue
OCALLS to invoke untrusted code outside SGX. As the
uRTS sgx_ecall function is used to perform ECALLs,
the instrumentation mode replaces the sgx_ecall func-
tion while the full-system emulation mode handles them
transparently by emulating eenter. To handle OCALLs,
the instrumentation mode instruments eexit to execute the
function specified by the rdi register, sets the rdi register
to indicate completion and jumps back into the enclave. As
before, the full-system emulation mode handles OCALLS
transparently by emulating eexit.
Asynchronous EXits (AEX). SGX allows enclave execu-
tion to be interrupted in the form of Asynchronous EXit(s),
and does so by preserving the enclave state in the EPC
and CREGs and jumping to the Asynchronous Exit Point
(AEP) provided when entering the enclave. Upon handling
the interrupt, the asynchronous exit handler can then invoke
eresume to resume execution of the enclave. The instru-
mentation mode simply relies on the OS’s interrupt handler
to suspend and resume enclave execution. To provide sup-
port for AEX, the full-system emulation mode saves state
when an AEX occurs and implements the eresume leaf to
resume execution.
Segmentation, cpuid, and MSRs. SGX enclaves may
access per-thread data through instructions that reference the
segment registers with a byte offset into the per-thread data.
EGX calculates the memory address to access in instru-
mentation mode, whereas EGX sets the segment registers
directly through the guest’s MSRs in full-system emulation
mode.

Additionally, EGX alters the behavior of cpuid and
certain MSRs to report SGX’s presence. For example,
cpuid reports the emulated EPC size as well as available
SGX features.
Debugging. While the actual edbgrd and edbgwr
instructions will prevent us from debugging a non-debug
enclave on SGX hardware, as these instructions check the

Figure 6: A successful run of an Intel-provided sample SGX
enclave using our full-emulation mode on an ARM Mac.

enclave control structure to determine if the enclave is in
debug or production mode, our software can simply ignore
this check.

A.4. Running Enclaves
EGX can successfully run a number of given debug

and non-debug hardware enclaves. We tested the full-system
emulation mode of EGX on two systems with Ubuntu 18.04
as guests: one with an Intel Core i9-9980HK and one with
an Apple M1. Additionally, we tested the instrumentation
mode on a system with an AMD Ryzen 5 PRO 5650G and
a system with an Intel Xeon Platinum 8352Y, both running
Ubuntu 20.04 LTS. To run SGX on any of these systems
in either mode, we must first build the Linux SGX SDK
and PSW package and run the installers, as one would do
on any typical SGX-capable platform (in emulation mode
this is performed on the guest). We then successfully used
EGX to run a modified version of Intel’s sample enclave
that prints ”Hello, world!” to the screen using an OCALL in
each of the aforementioned configurations. We demonstrate
a successful run of our full-system emulation mode on an
Apple M1 processor in Figure 6.
Benchmarks. Being a framework aimed at reverse-
engineering production enclaves, EGX is optimized for
strong enclave compatibility with many hardware platforms,
rather than performance. Nonetheless, to evaluate the per-
formance of our implementation, we implemented a number
of microbenchmarks measuring the cost of enclave creation
(avg. 10 runs), ECALLs, OCALLs, performing 1,000,000
AES-256 encryptions and calculating the 10,000th Fibon-
naci number using the ibig and num-bigint libraries (avg.
over 100 runs). The results are shown in Table 3.

A.5. Related Work
Prior work has sought to emulate SGX before, with

the most notable being that of OpenSGX [69]. OpenSGX
is early work which predates Intel’s SGX SDK and was
intended to kick-start research as processors with SGX were
just becoming commonplace. It was originally designed
for user-mode emulation around their proprietary ’sgxlib’
interface and was partially reverse-engineered from the SGX
specification. Unfortunately, OpenSGX has a number of
limitations which makes it incompatible with what we wish
to achieve and use an emulation framework for in this work.
In particular, as OpenSGX does not support the official SGX
stack and is written around a custom interface, it cannot

21

Platform (Mode) Creation ECALL OCALL AES-256 Fib (ibig) Fib (num-bigint)
Intel Xeon Platinum 8352Y (N) 69.053ms 0.006ms 0.012ms 0.010ms 0.017ms 0.018ms
Intel Xeon Platinum 8352Y (I) 18.390ms 0.570ms 0.590ms 0.591ms 0.532ms 0.424ms
AMD Ryzen 5 PRO 5650G (I) 9.404ms 0.093ms 0.100ms 0.363ms 0.109ms 0.105ms
Apple M1 (E) 10385.082ms 0.197ms N/A 0.613ms 0.636ms 0.619ms
Intel Core i9-9980HK (N) 61.155ms 0.013ms 0.015ms 0.027ms 0.035ms 0.032ms
Intel Core i9-9980HK (I) 8.030ms 0.123ms 0.120ms 0.252ms 0.115ms 0.135ms
Intel Core i9-9980HK (E) 7407.324ms 0.453ms N/A 0.669ms 0.663ms 0.713ms

TABLE 3: The results of running the microbenchmarks measuring the cost of enclave creation (10 runs), ECALLs, OCALLs, 1,000,000
AES-256 encryptions and calculating the 10,000th Fibonacci number (100 runs). Modes: Native, Instrumentation, Emulation.

emulate unmodified SGX-enabled executables, thus making
it incompatible with modern enclave software. Additionally,
OpenSGX did not consider making existing (commercial)
software pass SGX attestation using authentic (leaked) at-
testation keys. This is challenging, as one would need to
essentially re-implement the services provided by Intel’s
SGX platform software (PSW) framework and hook the
software’s attestation calls. While TeeRex [35] is not a
true full emulator, it does build a framework (with partial
emulation) that is designed for static vulnerability analysis
of unencrypted enclaves, but not to run or debug them, or
provide full-featured support, like is our goal.

Appendix B.
SGX Revocation Analysis

To complete our exploration of the real world implica-
tions of SGX design decisions and their potential impact
on security guarantees, we study how the key revocation
mechanisms leave the SGX ecosystem open to a potentially
unexpected form of attack and discuss how, for certain
classes of attackers, this denial of service attack is feasible
in practice.

Intel’s Enhanced Privacy Identification [25] (EPID)
scheme is used in the remote attestation process to allow
for anonymous authentication. A set of devices is assigned
to a group and each is issued a unique private key which
verifies successfully against the group’s public key without
identifying the signer. However, sometimes it is necessary to
revoke the ability of some signers to create valid signatures
and this revocation process itself could potentially be abused
to make the attestation process less usable.
SGX Revocation Process. Intel maintains three types of
revocation lists: group-based (GroupRL), private key-based
(PrivRL), and signature-based (SigRL). Of these, group
revocation is the most extreme, as it represents a scenario
where all device keys belonging to a specific group are
revoked, as if a whole family of products is compromised.

When a device private key is leaked and discovered in
its entirety, it is added to the PrivRL of its respective group
and a verifier will need to sign all future messages under
it in order to check for a collision with the signature it is
verifying. Alternatively, if a signature is known to come
from a compromised device, but that device’s private key
is unknown, a part of the revoked signature is added to
the group’s SigRL. To facilitate signature-based revocation,
every EPID signature includes two group elements (B,K)

0 10000 20000 30000 40000 50000
Revocation List Size

0

50

100

150

200

250

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

PrivRL Verify
SigRL Sign
SigRL Verify

Figure 7: EPID Performance versus Revocation List Size

where B is randomly sampled from a cyclic group in which
the Decisional Diffie-Hellman problem is hard and K =
Bf , where f is a part of the prover’s secret key. A zero-
knowledge proof is used to ensure the correct value for f
is used to calculate (B,K).

Proving Non-Revocation. We note the linear complexity
for both PrivRL and SigRL revocation. While the PrivRL
only affects the verifier’s computation, the SigRL length
affects both the prover and verifier computation: For every
(B,K) in the SigRL, the prover needs to create a zero-
knowledge proof of discrete logarithm inequality and the
verifier, of course, needs to check these proofs.

A Potential Denial of Service Attack. SGX’s lin-
ear time revocation scheme, combined with large scale
key compromises via microarchitectural side channel at-
tacks [120, 125, 127] leads us to investigate the possibility
of using key revocations to mount a denial of service attacks
on SGX’s attestation process. To that aim, we wrote a
tool to call Intel’s EPID library functions (from the Linux
2.10 Open Source Gold Release) from outside of SGX.
We generated our own custom PrivRLs and SigRLs which
we used to instantiate the member and verifier contexts
in the SDK. While varying the sizes of the revocation
lists, we measured the performance of the EpidSign and
EpidVerify functions at least ten times on an Intel NUC
with an i7-10710U CPU running Ubuntu 18.04.

Attestation Runtimes. Figure 7 shows the running time of
the EPID signature and verification algorithms, as a function
of revocation list size. We remark that computational costs
related to handling revocation lists dominate very quickly,
showing a clear linear pattern: Each entry in the SigRL
represents roughly a 5ms and 3ms increase in proving and
verification time respectively, while each PrivRL entry adds
.4ms to the verification time. We thus propose signature-
based revocation as the better target for an attack on EPID
performance.

22

The Cost of Delaying Attestation. Under the assumption
that the utility of SGX will be considerably weakened if it
takes an hour to perform a remote attestation, this translates
to a requirement for roughly 720,000 entries in a SigRL
corresponding to a given group ID. With microarchitectural
attacks like Foreshadow, CacheOut and SGAxe [120, 125,
127] reliably extracting SGX keys, assuming a cost of $50
per CPU5, this results in a $36 million budget for signif-
icantly delaying attestation for all CPUs belonging to the
targeted group. Next, while $36 million is well within reach
of wealthy individuals and large organizations, this cost can
be further reduced if one considers a virus that extracts SGX
keys, or a scheme which pays volunteers a small fee for
running a key-extraction program on their hardware.

Mapping CPU Architectures to Groups. We note,
however, that this is the cost of significantly slowing down
attestation for all CPUs belonging to a specific, targeted,
EPID group. While Intel does not publish how many groups
are used in practice, at the time of writing there are only
589 valid group IDs on Intel’s SGX development network.

Next, at time of writing, there are 470 unique Intel
processors with SGX capabilities [1]. Given that group
assignments change upon a microcode update, this suggests
that at any given point there are at least a few different
processor models per group in practice, leading to millions
of individual machines belonging to each group. Thus, a
denial of service attack on even a single group is likely
to impact millions of SGX machines, considerably slowing
down their attestation process. Finally, while Intel could fix
slow attestation by changing the group ID of affected CPUs,
this patch would need to propogate via BIOS updates, which
takes months in practice per our survey in Section 4.

Mitigations? While such a DoS attack is not fundamental
to all revocation mechanisms and schemes of this type, we
observe that this specific revocation mechanism is inherent
to SGX’s current attestation scheme, and was designed to
handle only a small number of compromised machines.
While Intel could, for example, monitor the number of
leaked keys to observe that such a DoS attack might be
occurring, their only recourse is to use the revocation mecha-
nism described above. To improve scaling, SGX would need
a completely different mechanism, which is unlikely to be
backward compatible.

Appendix C.
The AACS2 Protocol

As part of our reverse-engineering efforts, we are able to
provide the first public presentation and deployment analysis
of the Advanced Access Content System (AACS) 2.0 and
2.1 protocols, which we describe here for the benefit of
future researchers.

5. There are several low-end SGX-enabled CPUs for under $50:
https://ark.intel.com/content/www/us/en/ark/products/129487/intel-
celeron-g4900-processor-2m-cache-3-10-ghz.html.

C.1. Overview
The Advanced Access Content System (AACS) is a

standard for content distribution and digital rights man-
agement (DRM), maintained by a cross-industry consor-
tium called The AACS Licensing Administrator (AACS-
LA) [37]. While the first version of the protocol, AACS
1.0, has an official protocol and cryptographic specification
that has been publicly released [38] and studied [115, 116],
newer versions have been kept closed-source and propri-
etary. These most recent versions, AACS 2.0 and above,
allegedly break significantly from prior versions, containing
protocol updates and requiring the use of SGX for software
players to play 4k UltraHD Blu-ray format discs, though to
date there is no publicly published specification for these
newer versions.

In AACS, one party (i.e., a Blu-ray manufacturer) en-
crypts the disc content and many users must be able to
decrypt said contents. The users in this scheme are either
dedicated hardware players or software Blu-ray players,
such as PowerDVD. Additionally, some of these users might
be considered “revoked” and thus content must be encrypted
in such a way that all but these revoked users can access it.

We describe the high level AACS26 protocol here, and,
to allow for a clear and concise overview, refer the in-
terested reader to Appendix D for a detailed explanation
of the primitives and components. AACS has three core
requirements a player must satisfy to be able to decrypt
a disk and play a movie: it must be (1) licensed by AACS-
LA (checked through the Host Certificate), (2) not revoked
(achieved through being able to derive the Media Key Block
(MKB)), and (3) an original pressed disc (checked through
the Volume ID (VID)). We describe how these requirements
are achieved cryptographically in the following sections.
AACS Cryptographic Primitives. On any AACS-
protected disc, the root cryptographic key used to encrypt
the content is known as the Title Key and is generated at
random by the licensed replicator. For practical purposes,
rather than encrypting the full disc content (e.g. a 2-hour
movie) with the Title Key directly, the media content is split
into 6144-byte chunks called “Aligned Units”, which are
each encrypted with a per-chunk block key that is derived
from the Title Key and a per-chunk random seed.

For most cryptographic operations, AACS uses AES in
Cipher Block Chaining (CBC) mode with a 128-bit block
size (denoted AES-128E(k, d) and AES-128D(k, d)) and
defines a default CBC initialization vector7. AACS also
defines AES-G, a cryptographic one-way function based on
the AES cipher, and an extended version AES-G3, which
repeats the AES-G operation three times on a 128-bit in-
put to produce 384 bits of output. For processing data in
calculations involving keys, AACS defines a cryptographic
hashing function AES-H(x). For verifying the authenticity

6. We will use this notation to cover both recent versions of the protocol
(2.0 and 2.1), as all the information presented here (except where noted
otherwise) applies to both protocols.

7. 0BA0F8DDFEA61FB3D8DF9F566A050F7816

23

https://ark.intel.com/content/www/us/en/ark/products/129487/intel-celeron-g4900-processor-2m-cache-3-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/129487/intel-celeron-g4900-processor-2m-cache-3-10-ghz.html

and integrity of non-key content on a disc, AACS uses
ECDSA-SHA1, upgraded to ECDSA-SHA256 for AACS2.

We refer the reader to Appendix D.1 for more details
about each of these primitives and their exact constructions.

C.2. AACS Key Derivation
We now detail how AACS cryptographically realizes and

enforces the aforementioned three core requirements.
Checking the Host Certificate. In order for an au-
thorized software player such as PowerDVD (the “Host”)
to be able to decrypt and play an AACS-protected disc,
it must complete a mutual authentication with an AACS
compatible disc drive, followed by a series of key derivations
to compute the Unit Key(s) required to decrypt the media
content. The software player must contain an AACS Host
Certificate, consisting of an ECC Host Public Key and a
unique Host/Node ID, and the corresponding private key. For
a Host Certificate to be valid, it must be digitally signed by
AACS-LA and verifiable with the built-in AACS-LA public
key. Similarly, an AACS-licensed disc drive will contain a
Drive Certificate, also signed by the same AACS-LA root
private key.

We provide a detailed description of the AACS2 Drive-
Host mutual authentication scheme in Appendix D.2. At a
high level it uses a similar procedure as AACS 1.0, except
that the use of SHA1 and 160-bit ECC have been replaced
by SHA256 and 256-bit ECC respectively. This procedure
successfully ensures that both the host and the drive are
licensed by AACS-LA, as their public keys are contained
within digitally signed certificates. The corresponding pri-
vate keys are required to be stored in protected areas of the
host/drive software, which in the case of software players
like PowerDVD utilizes SGX.
Obtaining the VID. If the mutual authentication is
successful, the host will request that the drive return the
Volume ID (VID) of the disc8. The VID will only be read
by an AACS-licensed drive and returned to the host on a
successful authentication. To ensure the integrity of the VID,
the drive also protects it with AES-CMAC.
Obtaining the MKB. Once the host has obtained and
verified the VID, it must then obtain a Media Key Km by
processing the Media Key Block (MKB). The MKB contains
a Media Key encrypted with many processing keys to cover
all non-revoked licensed players. The MKB also contains
the necessary information for a licensed player to be able
to derive a Processing Key Kp using the subset-difference
algorithm and the player’s set of built-in device keys (see
below for more information on this derivation process).
Decrypting the disc. If the host can successfully arrive at a
Processing Key, it knows it has not been revoked. It will then
reference the Processing Key’s index (or node) to read the
corresponding encrypted Media Key data C from the Media
Key Data Record in the MKB. The disc’s Media Key can
then be decrypted as: Km = AES-128D(Kp, C)⊕uv where
uv is the subset-difference node number of the Processing

8. This is unique to each item of content, but not unique to each
individual instance of a media.

Key. The final key in the derivation sequence is the Volume
Unique Key (VUK) Kvu. The VUK is used to encrypt the
Title Key(s) and is generated from the Media Key Km and
the VID.

At this stage, the player has now satisfied all three of
the AACS core requirements, and it can calculate the VUK
for a given disc as: Kvu = AES-G(Km,VID). This allows
it to decrypt and play the disc.
AACS 2.0 vs. AACS 2.1. The main difference between
AACS 2.0 and 2.1 is the extension of the Media Key
derivation process described above to include a Media Key
Variant (MKV). Up to the calculation of the Processing
Key Kp, both versions are identical (and follow closely
with the known AACS 1.0 specification). Unlike for AACS
2.0, however, AACS 2.1 uses sequence keying with multiple
Media Keys in the MKB that correspond to certain device
nodes which can access them, as an improvement to the
traitor-tracing scheme. We omit the full details here for
brevity but document them completely in Appendix D.2.1,
providing the first formal description of this new portion of
the AACS 2.1 derivation.
Handling AACS Key Derivation and Revocation in
Practice. Naively, the aforementioned key derivation
and revocation checking process can be accomplished by
assigning each user a unique key and then encrypting the
title key for each non-revoked user. However, this scales
linearly with the number of non-revoked users. This can
be accomplished more efficiently using the Subset-Cover
framework presented in NNL [95], which is used by AACS
in practice. NNL utilizes a binary structure where each user
(or device) is viewed as a leaf in this binary tree. The Blu-ray
manufacturer finds a subset cover that encompasses all non-
revoked users, encrypts the disk contents under a random
key, then encrypts that key for all subsets in that subset
cover. For a summary of how NNL works, we refer the
interested reader to Appendix D.3.

Since Blu-ray discs are an offline physical medium, the
keys associated with them cannot be updated. If the AACS-
LA were to revoke a device or set of devices they could
not do so retroactively, but only for future releases. To
accomplish this, they would need to calculate a new subset-
difference tree (i.e., MKB), which is associated with a new
MKB version number. Hereafter, AACS-LA would need to
use this new MKB for all future Blu-rays (until the need
arises for another revocation).

C.3. Insights on AACS MKB Usage in Practice
As part of our exploration, we were able to delve more

deeply into how AACS actually manages keys in practice.
We omit the exact details of how PowerDVD specifically
leverages NNL to perform MKB key derivation for brevity,
and include only the insights that we deemed interesting
here. However, for more information (and additional in-
sights) we refer the interested reader to Appendix D.4.

We found that the PowerDVD software provisions 253
keys to an end user (effectively a device). This user cor-
responds to a leaf node in the NNL subset-difference tree,
and the 253 keys correspond to subset-differences of nodes

24

Figure 8: A visualization of AACS 2.1 MKB Version 70 revoca-
tions. The small underlined portion near 0x20000000 indicates the
region that corresponds to the PowerDVD keys we found.

Figure 9: A visualization of AACS 2.1 MKB Version 70 revoca-
tions with periodic revocations removed.

between the user leaf and root, and siblings of said nodes.
See Appendix D.5 for a concrete example of how this works.
At first, this might seem to indicate that the height of the
tree is only 23 (and thus the size of keyspace is 222), but an
analysis of a series of MKBs (obtained through our reverse-
engineering efforts) seems to indicate that the full tree is
actually of height 32. We thus hypothesize that PowerDVD
has only assigned a subset of keys corresponding to their
allocation.

We also were able to gain further insight into the key
revocation system by extracting the MKBs from various
Blu-rays and building a visual representation of the revoked
keyspace ranges, shown in Figure 8 for “Zombieland” with
MKB version 70. With these visualizations, we were able
to notice additional interesting characteristics related to the
practical deployment of AACS.

All of the MKBs we plotted produce nearly identical
plots: the first sixteenth of the keyspace is entirely revoked,
the second sixteenth is entirely unrevoked, and the final
fourth is entirely revoked. The rest of the keyspace alter-
nates between large unrevoked regions and small, sporadic
revoked regions. We hypothesize that the large revoked
regions are not actually revoked, but rather not-not-revoked;
i.e., some of this key space may be reserved for future usage
or allocation.

Revocations from the middle portion of the MKB
keyspace seemed to be somewhat periodic: for this region,
the MKBs included a revocation every 222 keys. Figure 9
illustrates the same keyspace as before, but with the periodic
revocations removed. These are almost certainly not real
revocations (i.e., they do not correspond to a real user), but
instead seem to serve as a sort of pseudo-revocation that
has a useful result of partitioning the keyspace into equal
subregions. Practically speaking, these smaller subregions
mean that any possible revocation can be expressed by
{Ti \ Tj} where no i has height greater than 23. As such,
revocations in one subregion will have no effect on other
subregions. Were it not for this partitioning, any revocation
would require a full recomputation of a subset cover; in-
stead, only a partial recomputation is needed. We note that
this is not a requirement of the NNL algorithm but seems
to be an interesting optimization for practical deployment.
See Appendix D.5 for a concrete example of how this might
work.
Existing AACS Revocations. To conclude our analysis of
AACS, we analyzed a series of MKBs to try to determine
how many actual device revocations have occurred in prac-

tice. We found that this appears to have happened a variety
of times already: between MKB versions 61 and 70, 9 ranges
are revoked, each comprised of either 4, 5, or 6 device
keys, and totaling to 45 keys revoked; and between MKB
version 70 and 72 a single range is revoked, spanning 1000
device keys. Of note, three of the ranges in the first set of
revocations actually occurred within the known PowerDVD
allocation. We found two releases with the same MKB
version number, but different MKBs. Two Blu-ray discs
of “Zombieland” both contain an MKB of the same type
and with version number 70, yet one version contains an
additional revocation. Further, there are no additional device
revocations in the MKB between versions 72 and 76 (even
though the MKB version has been updated). From this ob-
servation, we conclude that the MKB version number does
not directly correlate with the number of subset-difference
revocations.

Appendix D.
AACS Extended Details
D.1. AACS Cryptographic Primitives

AES-G is built upon the AES-CBC decryption operation,
where the 128-bit result from two 128-bit inputs x1 and x2

is computed as

AES-G(x1, x2) = AES-128D(x1, x2)⊕ x2

In place of the x2 input of AES-G, AES-G3 maintains
an internal 128-bit “seed register” s, which is incremented
by 1 for each of the three iterations. The seed register is
initialized to s0 defined as the constant:

7B103C5DCB08C4E51A27B01799053BD916

AES-H is based on the AES-G one-way function, and
returns a 128-bit hash value from an arbitrary-length input.
The input data to be hashed, x, is first padded to a multiple
of 128 bits using the standard SHA-1 padding method, i.e.,
the input is padded to a multiple of 128 bits. The padded
data x′ is then split into 128-bit blocks x′1, x

′
2, . . . , x

′
n, which

are used to calculate the 128-bit hash hi as:

hi = AES-G(x′i, hi−1)

The initial 128-bit hash value h0 is defined by AACS as:

2DC2DF39420321D0CEF1FE2374029D9516

The result of the AES-H function is the final hash value hn,
thus AES-H(x) = hn.

D.2. AACS Key Derivation
The AACS2 Drive-Host mutual authentication scheme

is preformed in the following procedure:
1) The host randomly generates the 256-bit Host Nonce

Hn

2) The host sends the nonce Hn and the Host Certificate
Hcert to the drive

3) The drive verifies that the Host Certificate is of the
correct AACS2 type, and supports bus encryption

25

4) The drive verifies the signature of the Host Certificate
using the AACS-LA Public Key AACS LApub

5) The drive checks the Host Revocation List to ensure
the provided Host ID is not revoked

6) The drive randomly generates the 256-bit Drive Nonce
Dn

7) The drive sends the nonce Dn and the Drive Certificate
Dcert to the host

8) The host performs identical type, signature, and revo-
cation list checks on the Drive Certificate

9) The host sends a request for a point on the elliptic
curve Dv and its associated signature

10) The drive randomly generates a 256-bit ephemeral pri-
vate key Dk

11) The drive computes the point Dv as

Dv = DkG

where G is the base point of the elliptic curve
12) The drive creates a digital signature of the concatena-

tion of the Host Nonce and the point Dv as

Dsig = AACS Sign(Dpriv, Hn||Dv)

13) The drive sends the point Dv and associated signature
Dsig to the host

14) The host verifies the signature of Hn||Dv with the
Drive Public Key Dpub contained in the Drive Cer-
tificate

AACS Verify(Dpub, Dsig, Hn||Dv)

15) The host randomly generates a 256-bit ephemeral pri-
vate key Hk

16) The host computes the point Hv as

Hv = HkG

where G is the base point of the elliptic curve
17) The host creates a digital signature of the concatenation

of the Drive Nonce and the point Hv as

Hsig = AACS Sign(Hpriv, Dn||Hv)

18) The host sends the point Hv and associated signature
Hsig to the drive

19) The drive verifies the signature of Dn||Hv with the
Host Public Key Hpub contained in the Host Certificate

AACS Verify(Hpub, Hsig, Dn||Hv)

20) The drive calculates the Bus Key BK from the point
on the elliptic curve

BK = x-coordinate(DkHv)lsb 128

where BK is the least significant 128-bits of the x-
coordinate

21) The host calculates the Bus Key BK from the point
on the elliptic curve

BK = x-coordinate(HkDv)lsb 128

where BK is the least significant 128-bits of the x-
coordinate

D.2.1. AACS 2.1 Media Key Variants

We describe the full Media Key derivation process for
AACS 2.1 here, which includes the addition of the Media
Key Variants.

We start by looking up C from the Encrypted Media
Key Variant Data record entry in the MKB. Instead of
Km, we can only get the Media Key Precursor Kmp as:
Kmp = AES-128D(Kp, C) ⊕ uv where uv is the subset-
difference node number of the Processing Key. The Media
Key Precursor is then combined with a per-manufacturer key
(called the Key Correction Data (or KCD)) to aid in traitor
tracing. The Media Key Precursor and KCD key is combined
to create the new processing key as: Kpnew = Kmp⊕KCD.

The next step in the AACS2.1 process is to compute
the variant number Kvn for the Processing Key node (and
hence device group) which we have arrived at as: Kvn =
AES-G(Kp,Nonce)&0xFFFF where Nonce is loaded from
the MKB Variant Number record. Additionally, AACS 2.1
uses 16-bit variant numbers, where AACS 1.X uses 10-
bit variant numbers. Next, the correct Variant Key Data
(VKD) entry has to be selected from the Variant Key Data
record in the MKB. The index of the VKD is computed as:
V KDidx = Kvn⊕VARIANTS[uv] where VARIANTS[uv]
is the entry in the variant number data record corresponding
to the index of the Pk uv node in the MKB Explicit Subset-
Difference record. The appropriate VKD for our device node
can then be looked up in the correct record, using this index
(one of 0xFFFF possible entries).

Finally, with both Kpnew and VKD corresponding to our
device node and player KCD, we can compute the final disc
Media Key Km as: Km = AES-128D(Kpnew,VKD)⊕ uv.

In the case of CyberLink’s implementation of AACS,
we make a few interesting observations. PowerDVD checks
the 2nd LSB (& 0x4) of Kmp to determine whether to
use the hardcoded CyberLink KCD key (found through our
reversing efforts in CLTA_SW.dll and CLTE.dll) if the
bit is zero, or some other key if the bit is one. This other
key is potentially a network-updateable SoftKCD value, as
code and URLs were found to support this in CLTE.dll
and CLTA_SW.dll, but currently no products seem to
utilize this functionality and the system might not be fully
implemented yet as a result. In our testing, all AACS 2.1
MKBs, when processed using PowerDVD device keys, used
the hardcoded KCD value.

D.3. Overview of NNL
Consider a full binary tree of size N = 2h. Each user is

viewed as a leaf in this binary tree. For a node i, denote Ti

as the subtree rooted at i. Each node i is assigned a label
LABELi. Denote Si,j as the subset difference of Ti \ Tj ,
in other words, all nodes with i as an ancestor, but not
j. Denote G as a cryptographic pseudorandom sequence
generator that provides an output 3 times the length of
the input. Denote GL(K), GM (K), and GR(K) as the left,
middle, and right thirds of the output of G(K).

Now consider a subtree Ti. For a node in this subtree
with some label K, its left and right children will be given

26

Figure 10: Subset-Difference Tree example

labels GL(K) and GR(K) respectively. Let LABELi,j

denote the label of node j derived from LABELi in subtree
Ti. For example, in subtree Ti the children of i will be 2i and
2i+1, and will be given labels (in that subtree) LABELi,2i

and LABELi,2i+1. It’s important to note that each node
i will have a label LABELi, and labels LABELk,i for
each ancestor k. Finally, let Li,j denote GM (LABELi,j),
this will be the key assigned to subset Si,j . Note that
given LABELi, Li,j can be computed with at most logN
invocations of G.

A subset cover S = {Si1,j1 , . . . , Sik,jk} is calcu-
lated such that it contains all non-revoked users. The
Li1,j1 , . . . , Lik,jk corresponding to the subsets in the cover
are used for encryption. For each subtree Ti of which leaf
u is a descendant, u will store the labels of all the siblings
of nodes on the path from u to i. For example in Figure 10,
u = 29 would store {T1 \ T2, T1 \ T6, T3 \ T6, T1 \ T15, T3 \
T15, T7 \ T15, T1 \ T28, T3 \ T28, T7 \ T28, T14 \ T28}.

Per NNL, this means a user u will store 1+
∑logN+1

k=1 k−
1 labels. Each tree Ti containing u will contribute k − 1
keys, plus 1 for the case with no revocations. (Note that
in practice, the extra key for the case with no revocations
is omitted, see Appendix D.5 for details.) If a user is not
revoked, then it will be in at least one subset of the subset
cover, and will be able to access the encrypted media.

Figures 11, 12, and 13 show an example NNL tree, the
same tree after revoking 19, and the tree after revoking 27.
Each encircled region represents a subset difference, and
would correspond to a key. For example, in Figure 13 the
region containing 13 and 26 corresponds to T13 \ T27 and
LABEL13,27.

D.4. MKB Key Derivation in PowerDVD
To compute GL, GM , and GR PowerDVD uses the

AES-128 decryption function and fixed constant: s0 =
7B103C5DCB08C4E51A27B01799053BD916.

1) GL(K) = AES-128D(K, s0)⊕ s0
2) GM (K) = AES-128D(K, s0 + 1)⊕ (s0 + 1)
3) GR(K) = AES-128D(K, s0 + 2)⊕ (s0 + 2)

Rather than storing each of the 253 keys with corre-
sponding i, j values, the keys are stored with 3 correspond-
ing values: a path, and two masks, a u mask and a v mask.

Since j is a descendant of i, a path starting at the root of
the tree and between both can be expressed using a sequence
of 0s and 1s, where a 0 denotes going left and a 1 denotes

Figure 11: Subset-Difference Tree Revocation Example Starting
State

Figure 12: Subset-Difference Tree Revocation Example After Re-
voking 19

Figure 13: Subset-Difference Tree Revocation Example After Re-
voking 27

going right while traversing the tree downwards. The u mask
specifies what position along the path corresponds to the Ti

tree and the v mask what position corresponds to the Tj

tree.
The AACS specification uses the term “device key” to

mean LABELi,j in NNL, and “processing key” to mean
Li,j . AACS additionally uses “media keys” and a “title key.”
The Title Key is used for the final media decryption, and
the Media Key is used to encrypt the Title Key. The Media
Key is obtained by processing the MKB. The MKB is a set
of keys encrypted under each Li,j corresponding to entries
in the subset cover of non-revoked users.

D.5. Additional Insights From Real World MKB
Usage

PowerDVD and NNL. We provide a concrete example
of PowerDVD’s usage of NNL to help better explain the
process. In Figure 10, the user corresponds to node 29 and

27

the sibling nodes are all demarcated by squares. For this toy
example, the keys provided to the user would correspond to
{T1 \ T2, T1 \ T6, T3 \ T6, T1 \ T15, T3 \ T15, T7 \ T15, T1 \
T28, T3 \ T28, T7 \ T28, T14 \ T28}.
Partitioning the MKB Keyspace. We observe that
the MKB keyspace seems to have a fixed set of periodic
revocations, essentially partitioning the larger keyspace into
smaller subregions. This optimization allows for only partial
recomputation upon revocation in one region. Figure 14
demonstrates what this would look like in a toy example;
each partitioned subregion can be treated as its own tree.
Note that this technique means there would never be a case
with no revocations.

Figure 14: Subset-Difference Partitioning Example

Appendix E.
PowerDVD Extended Details
E.1. CLKDE.dll

This is the detailed list of the ECALLs and functionality
provided by the CLKDE.dll enclave.

1) Wrapper for sgx_calc_sealed_data_size
2) Wrapper for sgx_ra_get_ga
3) Wrapper for sgx_ra_proc_msg2_trusted
4) Wrapper for sgx_ra_get_msg3_trusted
5) Call sgx_create_pse_session and initialized

Remote Attestation session context
6) Decrypts data using AES-GCM with a hardcoded

key/IV pair
7) Decrypts blob using Remote Attestation session key,

and seals data to disk
8) Cleanup session
9) Unused/return hardcoded error code

This enclave maintains a PSE session and implements
the secure portion of the SGX remote attestation process.
This is the mechanism that allows AACS2 keys to be se-
curely provisioned to software players, as the authenticity of
the enclave is verified by Intel prior to keys being released.
A variation of the Elliptic-Curve Diffie-Hellman handshake
is utilized to establish an ephemeral session key between the
CyberLink server and CyberLink CLKDE enclave that is
used to encrypt the key material in transit. Interestingly, we
observed that CyberLink uses an additional layer of AES-
GCM encryption for each key (Step 6 above), although the
security benefit is questionable at best as the key and IV are
hardcoded.

28

	Introduction
	Our Contribution
	Disclosure and Ethics
	Current Status

	Background and Related Work
	Intel Software Guard Extensions
	SGX's Attestation Mechanism

	Categorization of SGX Attacks, Consequences, and Mitigations
	Inferring Access Patterns
	Memory Corruption Attacks
	Speculative Execution Gadgets
	Leaking Enclave Data
	Fault Attacks
	Summary & Discussion

	Surveying SGX Update Timelines
	Unsealing The Secret Network
	Secret Overview
	Extracting the Consensus Seed
	Decrypting Transactions

	CyberLink PowerDVD
	Reversing PowerDVD
	Attacking PowerDVD
	Extracting The AACS2 Protocol Code
	The AACS2 Protocol

	Mitigations, Discussion, and Conclusion
	Appendix A: Emulated Guard eXtensions
	The SGX ISA and Supporting Software
	Enclave Loading
	Enclave Interactions
	Running Enclaves
	Related Work

	Appendix B: SGX Revocation Analysis
	Appendix C: The AACS2 Protocol
	Overview
	AACS Key Derivation
	Insights on AACS MKB Usage in Practice

	Appendix D: AACS Extended Details
	AACS Cryptographic Primitives
	AACS Key Derivation
	AACS 2.1 Media Key Variants

	Overview of NNL
	MKB Key Derivation in PowerDVD
	Additional Insights From Real World MKB Usage

	Appendix E: PowerDVD Extended Details
	CLKDE.dll

