// Copyright 2023, Midnight Blue. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "tea1.h" const uint16_t g_awTea1LutA[8] = { 0xDA86, 0x85E9, 0x29B5, 0x2BC6, 0x8C6B, 0x974C, 0xC671, 0x93E2 }; const uint16_t g_awTea1LutB[8] = { 0x85D6, 0x791A, 0xE985, 0xC671, 0x2B9C, 0xEC92, 0xC62B, 0x9C47 }; const uint8_t g_abTea1Sbox[256] = { 0x9B, 0xF8, 0x3B, 0x72, 0x75, 0x62, 0x88, 0x22, 0xFF, 0xA6, 0x10, 0x4D, 0xA9, 0x97, 0xC3, 0x7B, 0x9F, 0x78, 0xF3, 0xB6, 0xA0, 0xCC, 0x17, 0xAB, 0x4A, 0x41, 0x8D, 0x89, 0x25, 0x87, 0xD3, 0xE3, 0xCE, 0x47, 0x35, 0x2C, 0x6D, 0xFC, 0xE7, 0x6A, 0xB8, 0xB7, 0xFA, 0x8B, 0xCD, 0x74, 0xEE, 0x11, 0x23, 0xDE, 0x39, 0x6C, 0x1E, 0x8E, 0xED, 0x30, 0x73, 0xBE, 0xBB, 0x91, 0xCA, 0x69, 0x60, 0x49, 0x5F, 0xB9, 0xC0, 0x06, 0x34, 0x2A, 0x63, 0x4B, 0x90, 0x28, 0xAC, 0x50, 0xE4, 0x6F, 0x36, 0xB0, 0xA4, 0xD2, 0xD4, 0x96, 0xD5, 0xC9, 0x66, 0x45, 0xC5, 0x55, 0xDD, 0xB2, 0xA1, 0xA8, 0xBF, 0x37, 0x32, 0x2B, 0x3E, 0xB5, 0x5C, 0x54, 0x67, 0x92, 0x56, 0x4C, 0x20, 0x6B, 0x42, 0x9D, 0xA7, 0x58, 0x0E, 0x52, 0x68, 0x95, 0x09, 0x7F, 0x59, 0x9C, 0x65, 0xB1, 0x64, 0x5E, 0x4F, 0xBA, 0x81, 0x1C, 0xC2, 0x0C, 0x02, 0xB4, 0x31, 0x5B, 0xFD, 0x1D, 0x0A, 0xC8, 0x19, 0x8F, 0x83, 0x8A, 0xCF, 0x33, 0x9E, 0x3A, 0x80, 0xF2, 0xF9, 0x76, 0x26, 0x44, 0xF1, 0xE2, 0xC4, 0xF5, 0xD6, 0x51, 0x46, 0x07, 0x14, 0x61, 0xF4, 0xC1, 0x24, 0x7A, 0x94, 0x27, 0x00, 0xFB, 0x04, 0xDF, 0x1F, 0x93, 0x71, 0x53, 0xEA, 0xD8, 0xBD, 0x3D, 0xD0, 0x79, 0xE6, 0x7E, 0x4E, 0x9A, 0xD7, 0x98, 0x1B, 0x05, 0xAE, 0x03, 0xC7, 0xBC, 0x86, 0xDB, 0x84, 0xE8, 0xD1, 0xF7, 0x16, 0x21, 0x6E, 0xE5, 0xCB, 0xA3, 0x1A, 0xEC, 0xA2, 0x7D, 0x18, 0x85, 0x48, 0xDA, 0xAA, 0xF0, 0x08, 0xC6, 0x40, 0xAD, 0x57, 0x0D, 0x29, 0x82, 0x7C, 0xE9, 0x8C, 0xFE, 0xDC, 0x0F, 0x2D, 0x3C, 0x2E, 0xF6, 0x15, 0x2F, 0xAF, 0xE1, 0xEB, 0x3F, 0x99, 0x43, 0x13, 0x0B, 0xE0, 0xA5, 0x12, 0x77, 0x5D, 0xB3, 0x38, 0xD9, 0xEF, 0x5A, 0x01, 0x70}; uint64_t tea1_expand_iv(uint32_t dwShortIv) { uint32_t dwXorred = dwShortIv ^ 0x96724FA1; dwXorred = (dwXorred << 8) | (dwXorred >> 24); // rotate left -> translated to single rol instruction uint64_t qwIv = ((uint64_t)dwShortIv << 32) | dwXorred; return (qwIv >> 8) | (qwIv << 56); // rotate right } uint8_t tea1_state_word_to_newbyte(uint16_t wSt, const uint16_t *awLut) { uint8_t bSt0 = wSt; uint8_t bSt1 = wSt >> 8; uint8_t bDist; uint8_t bOut = 0; for (int i = 0; i < 8; i++) { // taps on bit 7,0 for bSt0 and bit 1,2 for bSt1 bDist = ((bSt0 >> 7) & 1) | ((bSt0 << 1) & 2) | ((bSt1 << 1) & 12); if (awLut[i] & (1 << bDist)) { bOut |= 1 << i; } // rotate one position bSt0 = ((bSt0 >> 1) | (bSt0 << 7)); bSt1 = ((bSt1 >> 1) | (bSt1 << 7)); } return bOut; } uint8_t tea1_reorder_state_byte(uint8_t bStByte) { // simple re-ordering of bits uint8_t bOut = 0; bOut |= ((bStByte << 6) & 0x40); bOut |= ((bStByte << 1) & 0x20); bOut |= ((bStByte << 2) & 0x08); bOut |= ((bStByte >> 3) & 0x14); bOut |= ((bStByte >> 2) & 0x01); bOut |= ((bStByte >> 5) & 0x02); bOut |= ((bStByte << 4) & 0x80); return bOut; } int32_t tea1_init_key_register(const uint8_t *lpKey) { int32_t dwResult = 0; for (int i = 0; i < 10; i++) { dwResult = (dwResult << 8) | g_abTea1Sbox[((dwResult >> 24) ^ lpKey[i] ^ dwResult) & 0xff]; } return dwResult; } void tea1_inner(uint64_t qwIvReg, uint32_t dwKeyReg, uint32_t dwNumKsBytes, uint8_t *lpKsOut) { uint32_t dwNumSkipRounds = 54; for (int i = 0; i < dwNumKsBytes; i++) { for (int j = 0; j < dwNumSkipRounds; j++) { // Step 1: Derive a non-linear feedback byte through sbox and feed back into key register uint8_t bSboxOut = g_abTea1Sbox[((dwKeyReg >> 24) ^ dwKeyReg) & 0xff]; dwKeyReg = (dwKeyReg << 8) | bSboxOut; // Step 2: Compute 3 bytes derived from current state uint8_t bDerivByte12 = tea1_state_word_to_newbyte((qwIvReg >> 8) & 0xffff, g_awTea1LutA); uint8_t bDerivByte56 = tea1_state_word_to_newbyte((qwIvReg >> 40) & 0xffff, g_awTea1LutB); uint8_t bReordByte4 = tea1_reorder_state_byte((qwIvReg >> 32) & 0xff); // Step 3: Combine current state with state derived values, and xor in key derived sbox output uint8_t bNewByte = (bDerivByte56 ^ (qwIvReg >> 56) ^ bReordByte4 ^ bSboxOut) & 0xff; uint8_t bMixByte = bDerivByte12; // Step 4: Update lfsr: leftshift 8, feed/mix in previously generated bytes qwIvReg = ((qwIvReg << 8) ^ ((uint64_t)bMixByte << 32)) | bNewByte; } lpKsOut[i] = (qwIvReg >> 56); dwNumSkipRounds = 19; } } void tea1(uint32_t dwFrameNumbers, const uint8_t *lpKey, uint32_t dwNumKsBytes, uint8_t *lpKsOut) { // Initialize IV and key register uint64_t qwIvReg = tea1_expand_iv(dwFrameNumbers); uint32_t dwKeyReg = tea1_init_key_register(lpKey); // Invoke actual TEA1 core function tea1_inner(qwIvReg, dwKeyReg, dwNumKsBytes, lpKsOut); }